
1

HTAP Databases: A Survey
Chao Zhang, Guoliang Li*, Fellow, IEEE, Jintao Zhang, Xinning Zhang, Jianhua Feng

Abstract—Since Gartner coined the term, Hybrid Transactional and Analytical Processing (HTAP), numerous HTAP databases have
been proposed to combine transactions with analytics in order to enable real-time data analytics for various data-intensive applications.
HTAP databases typically process the mixed workloads of transactions and analytical queries in a unified system by leveraging both a
row store and a column store. As there are different storage architectures and processing techniques to satisfy various requirements of
diverse applications, it is critical to summarize the pros and cons of these key techniques. This paper offers a comprehensive survey of
HTAP databases. We mainly classify state-of-the-art HTAP databases according to four storage architectures: (a) Primary Row Store
and In-Memory Column Store; (b) Distributed Row Store and Column Store Replica; (c) Primary Row Store and Distributed In-Memory
Column Store; and (d) Primary Column Store and Delta Row Store. We then review the key techniques in HTAP databases, including
hybrid workload processing, data organization, data synchronization, query optimization, and resource scheduling. We also discuss
existing HTAP benchmarks. Finally, we provide the research challenges and opportunities for HTAP techniques.

Index Terms—HTAP databases, Data organization, Data synchronization, Query optimization, Resource scheduling, Benchmarks

✦

1 INTRODUCTION

H Ybrid Transactional, and Analytical Processing
(HTAP) was defined by Gartner [97], [34]. Since then,

HTAP techniques have been deployed in various data-
intensive applications, e.g., banking and finance [86], E-
commerce [135], and fraud detection [105]. The Gartner
report envisioned that, by 2024, HTAP techniques will be
widely adopted in numerous business applications that en-
tail real-time data analytics. Compared with the traditional
data processing pipeline that processes transactions and
analytical queries separately, HTAP architecture enables a
unified system that not only can handle online transactional
processing (OLTP) efficiently, but also can perform online
analytical processing (OLAP) concurrently [34]. Such an ar-
chitecture aims to eliminate the need for an explicit Extract-
Transform-Load (ETL) process, thereby enabling real-time
data analytics on transaction data. For instance, HTAP
databases allow entrepreneurs in retail applications to an-
alyze the latest transaction data in real-time, and then they
can roll out promotional sales based on the gained insights.
In finance applications, HTAP databases enable vendors
to process customer transactions efficiently while detecting
fraudulent transactions simultaneously [98].

Over the last decade, we have witnessed the emergence
and evolvement of various HTAP databases [17], [24], [28],
[37], [44], [56], [59], [73], [77], [82], [85], [101], [102], [107],
[117], [135]. Since it is well recognized that a row store
is ideal for OLTP workloads, and a column store is better
suited for OLAP workloads [32], [56], HTAP databases
mainly adopt a dual-store architecture that leverages both a
row store and a column store. However, different categories
of HTAP databases adopt disparate storage strategies and
processing techniques to cater to various applications. For
instance, it depends on whether OLTP or OLAP has a
higher priority for the applications (e.g., OLTP is the first
citizen for banking scenarios while OLAP dominates the
analytical reporting). It also depends on the requirements of
availability, scalability, performance, and data freshness [19]

specified in the service level agreements (SLAs) [37] (e.g.,
large-scale E-commerce applications require high scalability
while banking and finance applications demand high data
freshness). Nevertheless, HTAP databases must strike a
trade-off between performance isolation and data freshness
when handling the mixed workloads of OLTP and OLAP.
The main reason is that the two types of workloads exhibit
a completely different computing pattern and can intervene
with each other, i.e., OLTP workloads [120] are update-
heavy and short-lived while OLAP workloads [118] are
read-heavy and bandwidth-intensive. Consequently, HTAP
databases cannot guarantee the metrics of query throughput
and data freshness simultaneously, albeit with a unified
architecture. As different applications deliver disparate re-
quirements, it is critical to study and understand the pros
and cons of HTAP databases under various architectures.

There are five main challenges that HTAP databases
need to address, including (C1) hybrid workload process-
ing, (C2) data organization, (C3) data synchronization, (C4)
query optimization, and (C5) resource scheduling.

Challenge 1. Hybrid Processing Challenge. The first
challenge is to process mixed workloads of OLTP and
OLAP efficiently while maintaining a high data freshness.
As there is a trade-off between performance isolation and
data freshness, it is challenging for HTAP databases to bal-
ance performance and freshness. Hence, these systems must
make a compromise on either performance isolation or data
freshness, depending on the specific HTAP applications.

Challenge 2. Data Organization Challenge. The second
challenge is to organize the data adaptively for HTAP
workloads with high throughput and low storage costs.
There are two rules of thumb: (i) the row store is suitable
for OLTP workloads and (ii) the column store is ideal for
OLAP queries. However, storing a copy of the entire data
for both formats leads to high storage overhead (i.e., space
cost and maintenance cost). Therefore, HTAP systems need
to make wise decisions for data organization (e.g., row-wise
or column-wise data layout) to reduce the storage overhead
while delivering high system performance.

2

Hybrid Processing Data Organization

Data Synchronization Query Optimization

Resource Scheduling

Data Generation Execution Rule Metrics

Freshness-drivenWorkload-driven

Dual-Store

Copy-on-Write

Hybrid Scan

Row Store with
Column Selection

Adaptive Hybrid Store

HTAP Indexing

In-Memory Delta
Merging

Log-based Delta
Merging CPU/GPU Acceleration

HTAP Architectures

HTAP Techniques

HTAP Benchmarks
HTAP Workload

Primary Row Store + In-Memory Column Store
Distributed Row Store + Column Store Replica

Primary Row Store+Distributed In-Memory Column Store
Primary Column Store + Delta Row Store

MVCC

Fig. 1. An Overview of HTAP Architectures, Techniques, Benchmarks

Challenge 3. Data Synchronization Challenge. The
third challenge is to decide when to synchronize the delta
data from the transactional store to the analytical store for
high data freshness while keeping high throughput and
scalability. On the one hand, immediately merging the delta
data to the analytical store can keep high data freshness.
However, it can greatly affect the performance due to the
merging overhead. On the other hand, merging the delta
data on demand can improve the throughput but lead to low
data freshness. Hence, HTAP databases need to synchronize
the data adaptively.

Challenge 4. Query Optimization Challenge. The
fourth challenge is to optimize the queries with both a row
store and a column store. In the HTAP databases, a query
can be executed against either the row store or the column
store; thus the query optimizer must judiciously decide
whether the row-based execution or the columnar execution
is more beneficial. However, it is challenging to generate
an optimal query plan in a large search space. Therefore,
the HTAP optimizer must balance the trade-off between the
planning time and query execution latency.

Challenge 5. Resource Scheduling Challenge. The fifth
challenge is to schedule the resources (e.g., CPU threads
and memory) for OLTP and OLAP instances effectively
for high throughput and data freshness. On the one hand,
assigning more resources to OLAP workloads favors high
query throughput but may block the OLTP threads due
to the limited bandwidth. On the other hand, scheduling
more resources to OLTP workloads can accelerate transac-
tion processing but may lead to low data freshness. Hence,
the HTAP resource scheduler must balance the trade-off
between performance isolation and data freshness as well.

In this work, we provide a comprehensive survey of
HTAP databases in three aspects, including HTAP archi-
tectures, techniques, and benchmarks. Figure 1 presents an
overview of HTAP-related techniques. It gives a taxonomy
of HTAP architectures and HTAP techniques, respectively.
It also presents four components of HTAP benchmarks. We
pay particular attention to how existing approaches address
the above-mentioned challenges, respectively.

1.1 HTAP architectures

We mainly study HTAP databases that utilize row stores
and column stores together to handle the mixed workloads
of OLTP and OLAP efficiently in a single database system.
Based on the storage strategies and processing paradigm,
we divide their architectures into four categories as follows:
(1) Primary Row Store+In-Memory Column Store. This
category of HTAP databases leverages a primary row store
as the basis for OLTP workloads and processes OLAP
workloads with an in-memory column store. Updates are
appended to the delta store, which will be periodically
merged with the column store. We review four represen-
tatives: Oracle [56], SQL Server [59], and DB2 BLU [107].
(2) Distributed Row Store+Column Store Replica. This cat-
egory relies on a distributed architecture to support HTAP.
The master node handles the read-write transactions and
asynchronously replicates the logs to the slave nodes. The
primary storage relies on a distributed row store, and some
slave nodes will be chosen as column-store servers for query
acceleration. We introduce two representatives: TiDB [44]
and F1 Lightning [134].
(3) Primary Row Store+Distributed In-Memory Column
Store. This type of database utilizes a primary with a dis-
tributed in-memory column store (IMCS) to enable HTAP.
We present a representative: MySQL Heatwave [82].
(4) Primary Column Store+Delta Row Store. This category
of databases utilizes an in-memory column store as the
basis for OLAP, and handles OLTP with a delta row store,
which will be eventually merged into the column store. We
introduce SAP HANA [117] and Hyper [85].
Other HTAP architectures. We also review other types of
HTAP architectures that complement the major archi-
tectures, including (i) row-only HTAP architectures; (ii)
column-only HTAP architectures; (iii) Spark-based HTAP
architectures; and (iv) cloud-native HTAP architectures.

1.2 HTAP techniques

This section takes a deep dive into the key techniques of
HTAP databases, including hybrid workload processing,
data organization, data synchronization, query optimiza-
tion, and resource scheduling.
(1) Hybrid Workload Processing. There are three kinds of
hybrid workload processing techniques, including (i) Multi-
Version Concurrency Control (MVCC) techniques [54], [53]
(ii) Copy-on-Write (CoW) techniques [51], [9]; and (iii) Dual-
store based processing [56], [59], [82], [117], [44]. First,
MVCC-based techniques process the hybrid workloads on
the same copy of multi-versioned data. Second, the CoW
technique relies on snapshotting to support HTAP, where
the main process handles the transactions and the forked

3

processes perform the queries. Third, dual-store-based pro-
cessing utilizes a transactional store for OLTP workloads,
and employs an analytical store for OLAP workloads.
(2) Data Organization. We introduce two types of data
organization techniques, including (i) primary row store
with the selected column store and (ii) adaptive hybrid data
storage. Both methods adaptively generate the data storage
based on the given workloads. The former organizes the
data by selectively replicating the data from the row store to
the column store, including frequency-based heatmap [91]
and integer programming [16]. The latter organizes each
table in a hybrid row and columnar format by vertically
and horizontally partitioning the tables, including the cost-
based approaches [5], [12], a clustering approach [11], and a
deep-learning-based approach [2].
(3) Data Synchronization (DS) There are two types of DS
techniques for various HTAP databases including (i) in-
memory delta merge [56], [59], [82], [107], [117] and (ii) log-
based delta merge [21], [44], [134]; The first category peri-
odically merges the newly-inserted in-memory delta data to
the memory-based column store. The second category [44],
[134] merges the deltas to the column store based on multi-
level delta merging, including log shipping and replaying.
(4) Query Optimization. We introduce three types of query
optimization techniques, including (i) hybrid row/column
scan [44], [59]; (ii) HTAP indexing [109], [125] and (iii)
CPU/GPU acceleration for HTAP [9], [61]. The first type
[82], [91] optimizes query plans by selecting the access path
of a row store or a column store. The second type relies
on path-copying and multi-version indexing techniques to
speed up HTAP. The third type leverages heterogeneous
CPU/GPU architecture to accelerate HTAP workloads.
(5) Resource Scheduling. There are two types of scheduling
techniques: the workload-driven approaches [117], [119]
and the freshness-driven approach [108]. The former adjusts
the parallelism of OLTP and OLAP threads based on the per-
formance of executed workloads. The latter [108] switches
the execution modes on resource allocation and data ex-
change for OLTP and OLAP workloads by considering the
data freshness.

1.3 HTAP benchmarks
We present state-of-the-art end-to-end benchmarks and
micro-benchmarks for evaluating HTAP databases. We in-
troduce four end-to-end HTAP benchmarks, including CH-
benchmark [26], HTAPBench [25], OLxPBench [50], HAT-
trick [79], and HyBench [139]. We focus on the key compo-
nents, including data generation, HTAP workload, execu-
tion rule, and metrics. In addition to the end-to-end bench-
marks, we will introduce three synthetic micro-benchmarks
for data organization [11], [12], [48].

1.4 Contributions
Differences with existing surveys. In this paper, we focus
on fundamental techniques of HTAP databases [63]. We
also summarize the pros and cons of various architectures
and techniques. Özcan et al. [92] discussed various HTAP
systems rather than the key techniques of HTAP databases.
Hieber et al. [43], [42] reviewed HTAP systems from several
dimensions, including architecture, query handling, and

concurrency control. However, it lacked an in-depth anal-
ysis of HTAP databases and neglected many fundamental
HTAP techniques, such as hybrid workload processing, data
organization, data synchronization, and query optimization.
Compared with a previous survey [138], this work has a
significant amount of new content: (1) it gives a systematic
overview and introduces five HTAP challenges in Section 1;
(2) it reviews the evolution of HTAP databases in the
history and introduces a trade-off between data freshness
and performance isolation in Section 2; (3) it gives a more
detailed analysis on the architectures in Section 3, including
the cloud-native HTAP architectures; (4) it introduces a new
taxonomy of the key techniques and presents each type of
techniques in more details in Section 4, including the hybrid
workload processing; (5) it presents eight state-of-the-art
HTAP benchmarks in Section 5, including OLxPBench [50],
HATtrick [79], HyBench [139], and mOLxPBench [48]; (6)
it presents six research directions with many new open
problems in Section 6, including HTAP for multi-model
data analytic [116], serving atop HTAP [78], [49], and cloud-
native HTAP techniques [38], [102], [121].

To summarize, we make the following contributions:

1) We survey HTAP databases. We introduce a taxonomy
of state-of-the-art HTAP databases according to their
storage architectures. We also discuss their pros and cons
on performance, scalability, and data freshness.

2) We summarize HTAP techniques. We take a deep dive
into the key HTAP techniques concerning hybrid work-
load processing, data organization, data synchronization,
query optimization, and resource scheduling.

3) We review HTAP benchmarks. We introduce the state-of-
the-art benchmarks on HTAP databases. We present their
schema, workloads, execution rules, and metrics.

4) We provide new research challenges and discuss future
directions, including data organization for distributed
HTAP databases, HTAP query optimization, and cloud-
native HTAP techniques.

2 BACKGROUND OF HTAP DATABASES

In this section, we introduce the background of HTAP
databases. We first review the evolution of HTAP databases
by introducing four phases of HTAP development and ap-
plications, and then we introduce a trade-off between data
freshness and performance isolation.

2.1 The Evolution of HTAP Databases

Figure 2 depicts a timeline of the HTAP databases between
2010 and 2022. We place the systems in the year when they
first released the HTAP functionality from the literature or
from the publicly released material. By investigating these
HTAP databases, we mainly classify the development of
HTAP databases into four phases as follows:

Year 2010-2014: Standalone Column-based HTAP databases.
In the first phase, HTAP databases mainly adopted stan-
dalone column-based databases, representatives are SAP
HANA [33], Hyrise [39], Hyper [51]. Since HTAP was not
formally defined at that time, they named such a technique
as ”hybrid OLTP&OLAP” [51] or ”OLxP” [83]. Back then,

4

202120202019201820172016201520142013201220112010

SAP HANA

Hyrise

GreenplumTiDB

F1 Lightning

Peloton
BatchDBHyPer

�row� MemSQL OracleDB2 BLU Caldera

RateupDBSQL Server

MySQL Heatwave

 HyPer
(column)

SingleStore PolarDB

2022

Polynesia

Proteus
PostgreSQL

Hyrise-new

AlloyDB
Snowflake

StoneDB

MarialDB

Citus

Fig. 2. A Timeline of HTAP databases that first released the HTAP functionality in the literature

the applications they targeted were mainly analytical ap-
plications with read-heavy transactional workloads, such as
the ERP applications [33].

Year 2014-2019: Standalone Row-based HTAP databases. The
year 2014 is the time when the HTAP term was formally
defined by a Gartner report [97]. It initially defined HTAP
as an application architecture that utilized in-memory com-
puting technologies to enable hybrid processing on the
same in-memory data store. In 2018, Gartner extended the
HTAP concept to ”In-Process HTAP” [34], which supported
weaving hybrid workload processing techniques together as
needed to accomplish the business task. Such a new defini-
tion indicated that HTAP is no longer limited to in-memory
computing techniques, which significantly expanded the
HTAP applications. During this period, major relational
databases extended the primary row store with a column
store. To name a few, DB2 BLU [107], MemSQL [88], SQL
Server [59], Oracle [56], PostgreSQL [83] and MarialDB [77].
The applications they targeted were medium-scale transac-
tion processing applications with real-time data analytics,
such as banking and finance services [86] and applications
of fraud detection [106], [105].

Year 2019-2022: Distributed HTAP databases. In the third
phase, there emerged many distributed HTAP databases,
such as SingleStore [102], Citus [28], F1 Lightning [134], and
TiDB [44]. On the one hand, these databases embraced the
NewSQL movement [94] by developing distributed SQL-
based transaction processing systems with high scalability
and strong consistency. On the other hand, they caught
up with the HTAP wave by expanding their capacity of
scalability and consistency to HTAP, e.g., adding distributed
columnar storage and unified data replication. Generally,
they are suitable for large-scale data-intensive applications
such as E-commerce [135], Internet of Things (IoT) [45], and
real-time social media [68].

Year 2022-present: Cloud-Native HTAP databases. As cloud
databases are proliferating, there have been emerging many
cloud-native HTAP databases [62]. Two representatives are
AlloyDB [38] and Snowflake [121]. With the disaggregation
of computing and storage, they enable HTAP with high
elasticity, high availability, and multi-tenancy. First, since
compute and storage resources can be scheduled on demand
individually, they provide high elasticity for HTAP. Second,
as the data is replicated across many availability zones and
is backed by the scalable cloud service, cluster and node
failures can be recovered quickly. Third, as the resources are
virtualized and shared by multiple tenants, they are more
cost-efficient. Since Gartner predicted [99] that the revenue

Memory

High performance isolation
Low data freshness

High data freshness
Low performance isolation

OLTP instance OLAP instance

OLTP OLAPOLTP OLAP

Fig. 3. A trade-off between data freshness and performance isolation

from the cloud databases will account for 50% of total DBMS
market revenue in the near future, we believe cloud-native
HTAP databases will find a wide spectrum of applications.

2.2 A Trade-off between Freshness and Isolation

Data freshness. As OLTP workloads are updating the data,
HTAP databases need to guarantee that the fresh data is
accessed by the analytical queries. Hence, the data freshness
refers to the lag time between the analytics and transactions. One
way of quantifying data freshness is to take the maximum
value of the timestamp differences between the result sets
of the OLAP client and OLTP client [139]. Additionally, the
data replication latency can also reflect the data freshness.
Particularly, with the separated transactional store and an-
alytical store, the fresh data is periodically replicated in the
analytical store. Since many approaches [44], [115], [134]
must merge the newly-updated data to the analytical store
before performing the data analytics, it measures how fast
the recently committed transactions are synchronizing to the
analytical store such that the analyzed data is fresh.
Performance isolation. In HTAP databases, performance iso-
lation [25], [26], [44], [104], [115] refers to the system’s capacity
of reducing the performance degradation when processing the
dynamic hybrid workload. In other words, it reflects how
well the systems can reduce the interference between OLTP
and OLAP workloads when executing them concurrently.
Regardless of the isolation architectures (in the same node
or different nodes), such metrics directly reflect HTAP
databases’ performance of handling hybrid workloads w.r.t.
the same number of OLTP/OLAP clients and the same scale
factor of a dataset.
A Trade-off. HTAP databases must balance a trade-off be-
tween data freshness and performance isolation. As shown
in Figure 3, handling the hybrid workloads with separated
instances can provide high-performance isolation but may
lead to low data freshness, hence the outdated results of
data analytics. For instance, TiDB [44] only degraded up

5

to 10% of the performance while it took up to 1000 ms to
apply the change logs for data replication. Handling the
hybrid workloads in a unified memory space of a single
sever favors high data freshness but it can greatly degrade
the performance. For instance, Hyper [85] took only mi-
croseconds to create a fresh snapshot, but it degraded up
to 40% of the performance. To quantify the effectiveness
of performance isolation, the degradation percentage [44],
[104] of transactional/analytical throughput is mostly used.
One way of quantifying the performance isolation is to
compare the performance between a sequential execution
and a hybrid execution with the hybrid workload[139]. The
lower the metric is, the better the performance isolation is.

3 HTAP ARCHITECTURES

In this work, we focus on the HTAP architectures with a
row store and a column store in a single DBMS. We do
not consider the loosely-coupled HTAP architectures [92]
as those architectures employ multiple databases to form an
HTAP solution that entails a costly ETL process. We classify
the tightly-coupled HTAP architectures into four categories:
(a) Primary Row Store and In-Memory Column Store; (b)
Distributed Row Store and Column Store Replica; (c) Pri-
mary Row Store and Distributed In-Memory Column Store;
and (d) Primary Column Store and Delta Row Store. Table
1 presents their representative databases, OLTP paradigm,
OLAP paradigm, and delta storage.

3.1 Primary Row Store+In-Memory Column Store
This category of databases [56], [59], [107] leverages a
primary row store and an in-memory column store in a
single node. It relies on a row store for handling the OLTP
workload, and the data will be persisted to the disk in a row-
wise page store. Column store is optimized for OLAP work-
load with compression techniques [1], [15] and standalone
columnar scans [56], [59], [107]. An in-memory delta store is
utilized to record the recent DML operations, which will be
merged into the column store periodically. For transaction
processing, read/write transactions will be handled by the
row engine with the ACID guarantee based on MVCC; data
updates will also be recorded in the delta store. For analyti-
cal processing, long-running queries are processed using the
columnar scan, and the delta data that has not been merged
should be traversed to access the fresh data. This category
of system has high analytical throughput because the OLAP
workloads are processed using an in-memory column store.
Data freshness is also high because the column store engine
can access the latest data in the main memory. However,
limited by memory capacity, the scalability of this category
of system is low. In addition, because transactional and
analytical workloads are processed in the same machine,
the isolation of the system is low.

3.1.1 Representatives of HTAP Databases
With architecture (a), Oracle in-memory dual-format
database [56], [91] combines the row-based buffer cache
with an in-memory column store (IMCS) to handle OLTP
and OLAP workloads simultaneously. IMCS consists of in-
memory compression units (IMCUs), and each IMCU is im-
mutable and can only be populated from the buffer; the data

changes are cached in the snapshot metadata unit (SMU),
and each IMCU is associated with one SMU. To merge the
updates to the IMCU, it must create a new IMCU that incor-
porates the data in the corresponding SMU. Another repre-
sentative is SQL Server [59], where an in-memory row-based
engine, called Hekaton [30], is integrated for handling OLTP
workloads. Its underlying storage is based on a disk-based
row store for logging the operations and persisting the data.
It also builds the column store index (CSI) for handling com-
plex queries. Different from Oracle, the in-memory columns
in CSI that are infrequently accessed will be compressed and
persisted to the disk, and CSI is updatable. Besides, the data
changes are appended to the tail of the in-memory table, and
they are indexed by a tail index, e.g., a B-tree. By scanning
the tail index, data changes will be periodically merged into
the column store. DB2 also adopts such an architecture;
it has been deeply integrated with an IMCS accelerator
called DB2 BLU [107] to incorporate advanced column-
based techniques such as compression-based operations and
single-instruction multiple-data (SIMD) instructions. BLU
also supports updating the column store.

3.1.2 Challenges & Opportunities
HTAP databases with architecture (a) need to improve
the scalability and performance isolation while maintaining
high performance and high data freshness. The main chal-
lenge is how to scale and isolate the OLAP workloads using
the column store. One possible solution is to scale the OLAP
workloads with a distributed in-memory architecture [124].
In addition, placing which columns into the column store
with a memory budget is also challenging as it is an NP-
hard problem [16].

3.2 Distributed Row Store+Column Store Replica
The second architecture is a distributed cluster including
a master node and multiple secondary nodes. The master
node handles the read/write transactions; the secondary
nodes are read-only. Particularly, when handling the trans-
action requests, the master node asynchronously replicates
the logs to the secondary nodes for data synchronization.
The primary node adopts a row store, certain secondary
nodes will be chosen to adopt a column store for query
acceleration. Transactions are handled in a distributed way
for high scalability; complex queries are performed in the
secondary nodes with a column store. For the pros, it has
high performance isolation and high scalability as the mixed
workloads are processed on separated nodes. For the cons,
the data freshness is low since newly-updated data may not
have been merged into the column store.

3.2.1 Representatives of HTAP Databases
Two representatives with architecture (a) are TiDB [44] and
F1 Lightning [134]. TiDB is a Raft-based distributed HTAP
database [90], which consists of multiple row-based nodes,
called TiKV nodes, among which a leader node handles
the read-write transactions. The leader node asynchronously
sends the data to other follower nodes; the follower nodes
only serve the read transactions and consistently communi-
cate with the leader. Only if the leader node has failures, a
follower node can become a leader by voting. For the data

6

Node 3

Row Store

Disk Master Node 2

Node 1

Memory

Node 3

(a) Primary Row Store+In-Memory Column Store (b) Distributed Row Store + Column Store Replica (c) Disk Row Store + Distributed Column Store (d) Primary Column Store + Delta Row Store
Persistent Storage

Memory

Log

Merge

Column Store

Delta

ClientClient

Disk
Column Store

Memory

Node 1

Partition 1
Partition 2
Partition 3

Master

Partition 3
Partition 1
Partition 2

Node 2

Partition 2
Partition 3
Partition 1

Transform
Row Store

Delta

Column StorePersistent Storage
Log

Merge

 Transform

Fig. 4. A Taxonomy of State-Of-The-Art HTAP Databases based on the Storage Architecture and Processing Paradigm

TABLE 1
A Classification of State-Of-The-Art HTAP Databases based on the Storage Architecture

Category HTAP databases OLTP Paradigm OLAP Paradigm Delta Store

Primary Row Store + In-Memory
Column Store

Oracle [56],
SQL Server [59]

Standalone Row-wise
MVCC

Standalone Columnar
Scan with Delta Traverse In-Memory Table

Distributed Row Store + Column
Store Replica

TiDB [44]
F1 Lightning [134]

Distributed Row-wise
2PC + Paxos

Distributed Columnar
Scan with Log Replay

B-tree, Change
Log

Primary Row Store + Distributed
In-Memory Column Store

MySQL Heatwave[82] Standalone Row-wise
MVCC

Distributed Columnar
Scan with Log Replay Change Log

Primary Column Store + Delta
Row Store

SAP HANA [117],
Hyper [85]

Cache-based Row-wise
MVCC

In-Memory Columnar
Scan with Delta Traverse

In-Memory
Dictionary

storage, the underlying data is partitioned into multiple
row-based regions. One or more servers will be selected
as learner nodes that store columnar replicas for analytical
processing. Learner nodes are read-only and do not partic-
ipate in voting. It adopts a global 2-Phase-Commit (2PC)
protocol [95] to handle distributed transactions based on a
global time stamp. For analytical processing, it develops a
centralized cost-based optimizer that supports cross-engine
query processing where queries can be pushed down to
either a row engine or a column engine. TiDB relies on
the Raft protocol for data replication [90]. The master node
asynchronously replicates logs to the follower and learner
nodes for log replaying, and it builds a delta merge tree to
track the changes and merges them to the column store peri-
odically. F1 Lightning [134] is another representative, which
integrates a data replication service into an OLTP engine
that is built on top of Spanner [27], a distributed OLTP
database with strong consistency and high scalability that
organizes the row-based partitions in multiple regions. The
lightning server contains a component, called changepump,
which uses the change data capture mechanism to detect
new changes, then transforms them from row-wise format
to columnar format and merges them into the storage. The
memory-resident deltas are row-wise B-tree, and Lightning
periodically checkpoints memory-resident deltas to disk.
When the deltas are too large, Lightning merges and trans-
forms them into the column store. The log-structured merge
(LSM) reader merges both memory-resident deltas and disk-
based deltas by merging and collapsing. Particularly, merg-
ing deduplicates changes in the deltas and copies distinct
versions to the new delta; collapsing combines multiple
versions of the same key into a single version. F1 lightning
adopts a Paxos-based 2PC protocol to handle distributed
transactions; a distributed query engine [57], F1 Query [112],
is employed for query processing. For the specified times-

tamp that is in the query window (normally 10 hours), the
pushdown evaluator reads the corresponding data from the
columnar file in the lightning server, and then obtains other
data from Spanner.

3.2.2 Challenges & Opportunities
HTAP databases with architecture (b) need to increase the
data freshness due to the high overhead of log shipping,
transformation, and delta merging in the distributed ar-
chitecture. The main challenge is how to efficiently merge
the delta files to the column store. Two possible solutions
are to (1) develop a memory-based delta logging and ship-
ping [115] and (2) design new indexing techniques for delta
merging [113], [72]. Moreover, how to effectively organize
the data (e.g., data layout, data placement, and column
compression) for a distributed HTAP database is also a
challenging task [2], [3].

3.3 Primary Row Store+Distributed IMCS
This kind of HTAP databases [82], [124] utilizes a row
store with a distributed in-memory column-store (IMCS) to
support HTAP. Two main differences between architecture
(a) and (c) are about the OLAP paradigm and delta store. For
the OLAP paradigm, the former one adopts the standalone
in-memory columnar scan with delta traverse while the
latter one relies on distributed in-memory columnar scan
with log replay. Regarding the delta store, architecture (a)
employs the in-memory table while architecture (c) uses the
change log, so they have the different data synchronization
methods (See Section 4.3).

With architecture (c), the row engine processes the OLTP
workloads, and the IMCS handles the query processing. The
columnar data is extracted from the row store, and the hot
data resides in IMCS and the cold data will be evicted to
disk. For the pros, it has high performance isolation as the

7

hybrid workloads are processed in different nodes. More-
over, it has a high OLAP throughput and scalability because
of the distributed IMCS. For the cons, it has medium or low
data freshness, depending on the deployment mode of the
IMCS cluster (e.g., on-premise or on-cloud). In addition, it
has low horizontal scalability on OLTP due to a standalone
row store for transaction processing.

3.3.1 Representatives of HTAP Databases
MySQL Heatwave [82] is a representative that employs
architecture (c). Specifically, it tightly couples the MySQL
database with a distributed IMCS cluster, called Heatwave,
to enable real-time analytics. Transactions are fully executed
in the MySQL database. Columns that are frequently ac-
cessed will be loaded into the Heatwave. When a complex
query comes in, it can be pushed down to Heatwave for
query acceleration. The columnar data is extracted from the
MySQL database, and the hot data resides in the Heatwave
cluster. For data synchronization, the latest transaction data
will be automatically transformed and merged to the col-
umn store in three cases: (i) every 200 milliseconds; (ii) when
the buffer size reaches 64 MB, or (iii) when the queries need
to access the latest updated data. The heatwave cluster also
developed the auto-pilot service to automate the processes
of data partition, query execution and scheduling.

3.3.2 Challenges & Opportunities
HTAP databases with architecture (c) need to increase the
data freshness due to the distributed in-memory column
store. The main challenge is how to balance the data fresh-
ness and OLAP throughput. Possible solutions are to design
(1) cost functions or (2) ML models for column data man-
agement, including column selection and compression [46].

3.4 Primary Column Store+Delta Row Store
This category of databases utilizes the primary column store
as the basis for OLAP, and handles OLTP with a delta row
store. The primary column store stores the whole data in
the main memory. Data updates are appended to the row-
based delta store. The system periodically merges the delta
data into the column store. For the pros, it has high data
freshness as the hybrid workloads are processed in the main
memory. Moreover, it has a high OLAP throughput because
of the primary column store. For the cons, it has low OLTP
scalability due to the delta-based row store. In addition, it
has low-performance isolation due to the standalone archi-
tecture for hybrid workload processing.

3.4.1 Representatives of HTAP Databases
SAP HANA [33], [117] and Hyper [51], [85] are two rep-
resentatives of architecture (d). SAP HANA divides the
in-memory data store into three layers: L1-delta, L2-delta,
and Main. The L1-delta keeps data updates in a row-wise
format. When a threshold is reached (e.g., 100k tuples), the
data in L1-delta is transformed and merged to L2-cache
based on a local dictionary. The L2-delta transforms the
data into columnar data, then merges the data into the
main column store based on a global dictionary. Finally,
the columnar data is persisted in the disk storage. For
high data freshness, the OLAP client will traverse the delta

records when scanning the column store. In addition, for
non-transformed records, it can use in-place updates for the
delta store. To update transformed records, it replaces an
update operation with a delete and an insert operations on
the delta store. Hyper [51], [85] was initially based on a row
store. Now it has supported the architecture of a primary
column store with a delta row store. Specifically, it uses
the buffer to handle concurrent transactions based on an
MVCC protocol. The version vector stores all the versions
for each unique tuple. Instead of periodically merging the
data in the version vector to the column store, Hyper
adopts transaction-level garbage collection, where all of the
versions that were generated by the transactions can be
safely removed after the transactions have been applied to
the column store. Finally, the columnar data is updated in-
place by applying all the committed transactions.

3.4.2 Challenges & Opportunities
For HTAP databases with architecture (d), two main prob-
lems need to be addressed. (1) they need to increase the
OLTP scalability due to the delta-based transaction process-
ing. (2) they need to increase performance isolation due to
the unified memory pool for HTAP. The main challenge is
how to traverse the delta storage efficiently while keeping
high throughput for HTAP. Although they have offered
certain scaling-out solutions [37], [81], these approaches
need to be further justified due to the centralized transaction
scheduler.

3.5 Applications of HTAP Architectures

HTAP databases with the above-mentioned architectures
have their merits and demerits. Hence, “one HTAP database
cannot fit all”, especially for different applications. By com-
paring their pros and cons, we summarize the gained in-
sights and give the recommendations as follows.

(1) Architecture (a) is suitable for the applications that
require high throughput and data freshness, but the de-
mand for scalability is not high. Representatives are the
banking and finance services [86] that need to process and
analyze the customers’ transactions efficiently. Therefore,
these applications have a high requirement on the system
throughput. Since the number of target customers is almost
fixed, these applications do not require high scalability.

(2) Architecture (b) is ideal for applications that require
high scalability and can have tolerable data freshness. A
representative is an E-commerce application with real-time
data analytics. Such applications need to process a large
number of concurrent transactions from multiple customers,
especially for holidays, e.g., Double-Eleven in Alibaba [135].
Therefore, the scalability requirement must be fulfilled. Nev-
ertheless, such applications do not force zero freshness as it
is acceptable that there is any inconsistency in a short period
of time, e.g., customer retention rate.

(3) Architecture (c) is suitable for applications that re-
quire high analytical throughput and scalability, but the
demand for data freshness is not high. A representative is
the IoT applications with real-time data analytics [45]. On
the one hand, these applications have a high requirement
for analytical throughput and scalability. Thus, a distributed
in-memory column store is a good fit for such cases. On the

8

other hand, the data updates in these scenarios are rare, thus
a standalone row store is sufficient.

(4) Architecture (d) is a good fit for applications that
require high analytical throughput and high data freshness.
A representative is real-time fraud detection [105], [106],
which requires high data freshness as they can not toler-
ate any fraud, which could cause significant consequences.
Nevertheless, the scalability requirement is not high.

3.6 Other Architectures

Other than the four main types of HTAP architectures,
there are other HTAP architectures, including (1) row-only
HTAP architectures; (2) column-only HTAP architectures;
(3) Spark-based HTAP architectures; and (4) cloud-native
HTAP architectures. We summarize them as follows:

(1) Row-only HTAP architectures [51], [76] rely on the
purely row store to enable HTAP. For instance, the first
version of Hyper [51] employed a copy-on-write mechanism
to fork an OLAP process to operate on a separate snapshot.
Its main process handles the transactions simultaneously,
and both the OLTP and OLAP processes are based on the
row-based data store. BatchDB [76] leverages the primary-
secondary replication, where the primary row-wise replica
is used for OLTP, and the secondary row-wise replica is in
charge of OLAP. It uses a batch-based propagation mecha-
nism to synchronize the updates from the primary replica to
the secondary replica. This type of architecture relies heavily
on the row-based query processing in the main memory to
process the hybrid workload. Thus, both the freshness and
OLTP throughput are high. However, the major drawback
is that the analytical throughput is much lower compared to
the column-based query processing.

(2) Column-only HTAP architectures [9], [39], [61], [111]
rely solely on a column store to support HTAP. For example,
Hyrise [39] initially employed an adaptive columnar layout
to support HTAP, and the basic idea is to use narrower
column groups to handle OLAP workloads and leverage
wider column groups to handle OLTP workloads. The latest
version of Hyrise [31] develops the chunk-based column
store, a PAX [4]-like data layout that horizontally divides
a table into partitions (a.k.a., row groups), and each par-
tition is organized in columns. NoisePage [87] (previously
named Peloton [11]), a self-driving columnar database [20],
[74], [75], [93], also adopts such a data layout based on
Apache Arrow [8] format. Caldera [9] relies on the copy-on-
write mechanism with CPU/GPU architecture where OLTP
workloads are handled by multi-threads of CPU and OLAP
workloads are executed with GPU in parallel. Another case
is RateupDB [61], which also adopts the CPU/GPU archi-
tecture. Different from Caldera [9], it relies on the primary-
secondary replication to enable HTAP. TiQue is a recent
work that adds the transaction logic in SQL and enables
HTAP on top of a column store. The basic idea is to add
the delta table and transaction metadata for an analytical
database, thereby accelerating the transaction processing.
Overall, column-only HTAP architectures have a high an-
alytical throughput, but the data updates and data synchro-
nization can significantly affect the system’s performance.

(3) Spark-based HTAP architectures. Such systems [13],
[80] support HTAP by combining an OLTP engine and an

OLAP engine. The OLTP engine is dominated by columnar
databases such as HBase [41], and the OLAP engine mainly
uses a Spark [137] engine. Both engines share the data in
a distributed file system (such as HDFS [18]). For example,
Splice Machine [123] and Phoenix [100] handle data updates
based on HBase, and leverage Spark for big data analytics.
SnappyData [80] integrates a transactional engine, Apache
Geode [36], into the Spark for processing streaming, trans-
actional, and interactive analysis simultaneously. Wildfire
[13] tightly couples the Spark with a distributed transaction
engine. In the upper layer, it provides a unified interface
to take as input the hybrid workloads. The middle layer
schedules the OLTP workloads with Scala API to the trans-
actional engines, and routes the Spark SQL queries to Spark
executors. In the storage layer, they organize the data in the
LSM-tree format with an indexing support [72]. The Spark-
based HTAP systems have high scalability and are suitable
for big data analytics with modest data updates. However,
the data freshness is low due to the shared file storage.

(4) Cloud-Native HTAP architectures [22], [23], [38],
[102], [121] rely on the disaggregation of compute and
storage to enable HTAP. For instance, AlloyDB [38] is a
PostgreSQL-compatible cloud-native HTAP service. In its
compute layer, the compute nodes rely on machine learn-
ing to convert the in-memory data from the row format
to columnar format for query acceleration. In its storage
layer, AlloyDB has developed an elastic log storage service
that organizes the data in shards and asynchronously ma-
terializes the WAL records to fresh pages, and the dirty
pages in the compute layer are never flushed into the
storage [130]. Another example is SingleStore (the successor
of MemSQL [88]), which proposes a unified table storage
structure based on a cloud-native architecture. It relies on
a distributed in-memory row store for handing updates.
The data is persisted to the disk-based columnar storage,
and is organized as LSM trees in the storage layer; the
secondary hash indexes are built for accelerating point
queries. Snowflake [29], which is a cloud-native OLAP
database, has utilized its metadata storage to implement an
HTAP solution, called Unistore [121], supporting real-time
data analytics. PolarDB-IMCI builds an in-memory column
index in a disagreggation architecture of PolarDB [23]. Data
synchronization is performed by replaying physical redo
logs from the shared storage. Cloud-native architectures
empower HTAP with high elasticity, availability, and multi-
tenancy. However, the data freshness is low due to the
philosophy of ”log is the database”, especially when the log
has not been replayed in the storage layer.

4 HTAP TECHNIQUES

As shown in Table 2, we summarize five types of HTAP
techniques, including (1) hybrid workload processing; (2)
data organization; (3) data synchronization; (4) query opti-
mization; and (5) resource scheduling. It also presents their
main methods, key techniques, pros and cons. 6 illustrates
an overview of the HTAP techniques. From a top-down
perspective, (1) OLTP and OLAP workloads are handled by
hybrid workload processing. (2) HTAP resource scheduling
dynamically assigns the resources to the hybrid workload.
(3) Query optimization relies on row and column stores

9
TABLE 2

An Overview of HTAP Techniques

Task Type Main Method Key Technique Pros Cons

Hybrid Workload
Processing

MVCC-based HTAP Version Chains for OLTP and OLAP [54] High Freshness Long Version Chains
Copy-on-Write based HTAP Snapshotting OLTP for OLAP [51] High Freshness Large Memory Size

Dual-Store based HTAP Separated Stores for OLTP and OLAP [56] High Isolation High Sync Cost

Data
Organization

Primary Row Store with
Selected Column Store

Frequency-based Heatmap [91] Arbitrary Queries Low Utility
Cost-Based Linear Programming [16] High Utility Single-Table Queries

Adaptive Hybrid
Data Storage

Cost Functions [2], [5], [11], [12] High Efficiency Low Utility
Machine Learning Models [2], [3] High Utility Training Overhead

Data
Synchronization

In-Memory Delta Merging
Threshold-based Merging [56] Fast Insertion Slow Lookup

Delete table based Merging [59] Fast Lookup Slow Insertion
Dictionary-based Merging [117] High Efficiency Low Scalability

Log-based Delta Merging
Multi-Level Delta Merging [44], [134] High Scalability High Merge Cost

Change Data Capture [21], [82] High Isolation High Latency

Query
Optimization

Hybrid Row/Column Scan
Cost-based Execution [44], [32], [122] High Utility Large Search Space

Rule-based Execution [56], [59] High Efficiency Low Utility

HTAP Indexing
Parallel Binary Tree [125] High Throughput Large Memory Size

Multi-Version Partitioned B-tree [109] High Scalability Low Throughput
CPU/GPU Acceleration CPU for OLTP, GPU for OLAP [9], [61] High AP Throughput Low Freshness

Resource
Scheduling

Freshness-Driven Method Execution Mode Switching [108] High Freshness Low Throughput
Workload-Driven Method Rule-Based Resource Assignment [119] High Throughput Low Freshness

9LUWXDO�0HPRU\

2/73 2/$3

&RS\�RQ�ZULWH

2/73�5HSOLFD 2/$3�5HSOLFD'DWD�6\QF
,Q�EDWFKHV

2/73 2/$3

�D��&RS\�RQ�ZULWH�+7$3 �E��'XDO�VWRUH�+7$3

Fig. 5. Hybrid Processing based on Copy-on-Write and Dual-Store

to execute the query. (4) Data synchronization merges the
updates from the row store to the column store. (5) Data
organization adaptively organizes the hybrid storage.

4.1 Hybrid Workload Processing
Hybrid workload processing aims to handle the mixed
workload under a unified architecture. It mainly consists of
three types of techniques: (1) MVCC-based HTAP; (2) copy-
on-write-based HTAP; and (3) dual-store-based HTAP.

4.1.1 MVCC-based HTAP
Multi-Version Concurrency Control (MVCC) is the most
widely adopted transaction management technique in ma-
jor relational DBMSs [133]. However, it is challenging to
support HTAP solely based on MVCC. This is because
HTAP workloads will lead to frequent version traversing
and cleaning of stale data versions. Therefore, the main
challenge is how to reduce the resource contention and
improve the query performance by efficiently traversing and
reclaiming the version chains [6]. To make the MVCC-based
databases more HTAP friendly, Weaver [52] utilizes the frag
skip lists to speed up the version chain lookup by using
two pointers for each node, which can accelerate the in-
chain version traversing and cross-chain version traversing,
respectively; Diva [53] separates the version searching and
version cleaning by maintaining a provisional index and
performing an interval-based version clearning separately,
which results in a better HTAP performance. Note that

MVCC-based systems [133] can implement various isola-
tion levels including read committed, repeatable read, snapshot
isolation, and serializable snapshot isolation. The concurrency
control techniques should be different when it comes to
different isolation levels. As a result, HTAP techniques may
vary slightly because the delta table should adapt to dif-
ferent isolation levels. As similar techniques of concurrency
control in OLTP can be applied to HTAP systems, existing
HTAP techniques did not discuss these issues.

Pros and Cons. MVCC-based HTAP processing has a high
freshness as the analytical queries can access the latest visi-
ble data by traversing the version chains. However, when it
comes to the long version chains, it will incur a significant
overhead for version traversing and cleaning.

4.1.2 Copy-on-Write based HTAP

This category of techniques [9], [51], [125] relies on in-
memory techniques with the Copy-on-Write (CoW) mech-
anism to support HTAP. The basic idea is to create snap-
shots for handing OLAP workloads when the main storage
encounters a write operation. As shown in Figure 5(a), a
snapshot is generated by forking the main OLTP process
with a consistent virtual memory.

For transaction processing, the main OLTP process uses
a single thread to execute the transactions in a sequential
way without locking and latching [51], resulting in lock-free
transaction processing. Since the data is maintained in the
main memory, the OLTP process can execute transactions
at the rate of tens of thousands per second. Moreover,
CoW can also handle transactions using multiple cores [125]
or multiple threads [51] where each thread processes the
sequential transactions over a data partition.

For analytical processing, the forked OLAP process han-
dles the queries with the up-to-date snapshots. Particularly,
the OLAP process can utilize the OS-enabled interface to
create the updated pages on demand, which only takes
several microseconds. With multiple threads, the queries
can be performed in parallel against a single snapshot or

10

multiple snapshots [51]. Besides, the OLAP process can
utilize GPUs to accelerate the query processing [9].

Pros and Cons. This type of technique enjoys high fresh-
ness as the OLAP process can always analyze the fresh data
via snapshotting. However, it suffers from large memory
size because each process will create a new snapshot, espe-
cially for the write-heavy workload. What is more, it has low
isolation due to the shared resources in the same instance.

4.1.3 Dual-Store based HTAP
This type of techniques [10], [33], [44], [61], [56], [76], [82],
[83] relies on a dual-store architecture to handle HTAP
workloads. Most of HTAP databases introduced in Section 3
employ such an approach by developing a dual-store with
both row and columnar format [44], [56], [82], [83], or purely
row format [76] and purely column format [33], [61], [85].
As shown in Figure 5(b), a main store is used for handling
OLTP workloads, and a secondary store is employed for
processing OLAP workloads. The recently updated data is
synchronized from the main store to the secondary store in
batches periodically and asynchronously.

For transaction processing, the main store relies on
MVCC protocols [133] to process the transactions. Specifi-
cally, each insert is first written to the log and the row store,
then is appended to the delta store. An update creates a new
version of a row with a new lifetime of a begin timestamp
and an end timestamp, and the older version is marked as a
delete row in a delete bitmap.

For analytical processing, queries are performed using
column-oriented techniques [1] such as compression-aware
processing [58], single-instruction multiple-data (SIMD) in-
structions [56], and vector processing [85]. Queries can
also be accelerated with new hardware such as heteroge-
neous CPU/GPU processors, Processing-in-memory (PIM)
chips [17], [71], and FPGAs [110]. To analyze the fresh data,
the query engine traverses the delta data [56], [59], or uses a
merge-on-read mechanism [44], [134] that merges the delta
data to the main store before analyzing the whole data.

Pros and Cons. Dual-store HTAP processing has high
isolation as the workload can be processed with two sepa-
rated stores using either logical isolation [56], [59], [76], [61],
[38] or physical isolation [44], [82]. However, it has a high
synchronization cost as the delta data shall be converted and
merged to the secondary store.

4.2 Data Organization
Data organization in HTAP databases requires choosing an
optimized data layout, e.g., row-wise or column-wise data
layout for the mixed workload. As maintaining two copies
of data for OLTP and OLAP workloads is costly, existing
methods seek to strike a trade-off between the throughput
and storage cost. They fall into two categories of approaches:
primary row store with selected column store and adaptive
hybrid data storage.

4.2.1 Primary Row Store with Selected Column Store
The first category of methods persists the transaction data
in the row store and chooses part of the attributes to be
included in the column store. The major objective is to select
the beneficial columns (i.e., having high utility of query

OLTP

ColumnRow

Data Synchronization

HTAP Databases

OLAP

 Query Optimization

HTAP Resource Scheduling

Data Organization

Hybrid Workload Processing

Fig. 6. The Key Techniques of HTAP Databases

acceleration and low update cost) into the memory from the
primary row store. With such an approach, OLTP workloads
are handled by the row store, and OLAP workload can be
accelerated by in-memory columnar scan. It has two main
methods: (1) frequency-based heatmap and (2) cost-based
linear programming.

(1) Frequency-Based Heatmap. The heatmap ap-
proach [91] selects the columns based on the access fre-
quency from the workload. Particularly, the frequently-
accessed columns will be kept in the memory and rarely-
accessed columns will be evicted to disk. Basically, it groups
the in-memory columns into three clusters based on their
access frequencies: hot, candidate, and cold columns. The
candidate columns are the columns of interests. If some of
them were frequently-accessed, then they would be marked
as hot columns, which will be populated from the persistent
row store. The columns are marked as cold if they were not
touched during a time window, e.g., several days. If the cold
columns have been populated, they are compressed and
evicted to the persistent columns. As extracting the columns
from the row store is expensive, the evicted columns can be
loaded back if accessed later.

Pros and Cons. The pros of heatmap approach is that
it supports arbitrary queries and is easy to implement.
The downside is that it may have a low utility as it only
considers the access frequency and neglects the effect of
various column combinations concerning different queries.

(2) Cost-Based Linear Programming. Another approach
is the cost-based linear programming [16], which formalizes
the in-memory column selection as a knapsack-style prob-
lem, and then uses an integer linear programming (ILP)
method to solve the problem. Given a set of queries, its
objective function is a cost function that sums over the scan
cost of each query over the involved columns. The goal is to
minimize the cost function with a set of columns subject to
a given constraint, e.g., the total column size is not greater
than a memory budget.

Pros and Cons. The ILP method can have high utility
because the selected columns can reduce the cost of the
queries. However, it is unclear how the cost functions can
estimate the cost of complex queries that involve multiple
tables and complex operations.

11

4.2.2 Adaptive Hybrid Data Storage
This line of works [2], [5], [11], [12] organizes the data
adaptively based on the given workloads and designed
cost functions. Such approaches adopt a fine-grained hy-
brid storage scheme. For example, H2O [5] supports three
storage layouts: columnar layout, row-wise layout, and col-
umn groups (i.e., width-varying vertical partitions of the
tables). Given a query workload, it evaluates the cost of
different storage schemes (including processing cost and
conversion cost), and then selects an optimal storage so-
lution. Casper [12] selects an optimal layout of columns
based on the mixed workload of read-only queries and
updates. It considers various column features, including the
number of partitions, the size and range of each partition,
the sorting method (i.e., sorted or unsorted), the updating
method (e.g., in-place or out-of-place), and the cache size.
By evaluating the cost of each scheme based on the defined
cost function, it obtains a solution that minimizes the cost
with the SLA-aware constraints. Peloton [11] uses a flexible
schema to logically divide a relational table into different
tiles, where each tile is a sliced data block with vertical
and horizontal partitions. With a clustering method, it phys-
ically materializes the tiles on disk based on the workload.
Beyond the cost-based data organization in a standalone
system, Proteus [2] leverages machine learning methods to
select the optimal mixed row/column storage based on a
distributed architecture. It considers a larger design space
for the storage, including data format (row-wise or column-
wise), data placement (partial or full copy on a node), data
compression, and data tiering (memory or disk). Then, it
characterizes the workload concerning the storage layout.
Finally, it selects a generated storage schema through a
learned cost model. Its follow-up work, Tiresias [3], further
extends Proteus to support automatic indexing.

Pros and Cons. The adaptive hybrid data layout has a
lower storage cost and a higher throughput. However, such
methods have two main drawbacks. First, the hybrid stor-
age increases the system’s complexity in query processing as
many execution rules need to be re-implemented. Second,
the transaction processing over hybrid storage leads to
frequent random accesses, resulting in multiple disk I/Os.

4.3 Data Synchronization
As data resides in multiple replicas, efficiently synchroniz-
ing the latest transaction data, i.e., the deltas, to the read
replicas is required. In addition, since some read replicas
adopt a columnar format, it is important to have a tailored
method to merge the deltas to the column store efficiently.
To address such a problem, two kinds of synchronization
methods are proposed. Namely, in-memory delta merging
and log-based delta merging.

4.3.1 In-Memory Delta Merging
This type of technique synchronizes the data between the
row store and column store using the in-memory delta
merging. Particularly, there are three key techniques: (1)
threshold-based merging; (2) delete-table merging; and (3)
dictionary-based merging.

(1) Threshold-Based Merging. This technique periodi-
cally merges the delta data to the column store, which has

two steps. First, data updates (inserts/updates/deletes) are
recorded in a delta table that is normally implemented using
a heap table. Second, the delta data will be migrated to
the column store when its size reaches a threshold. Partic-
ularly, it can use a trickle-based mechanism that constantly
migrates the data in the background.

Pros and Cons. This method supports fast insertion as
the updates can be inserted into the heap table quickly.
However, when the threshold has not been hit, it could slow
down the query processing. This is because the analytical
query will not only scan the columnar data (i.e., columnar
scan) but also traverse the in-memory delta data that has not
been merged in order to access the fresh data. Therefore, it
has a larger delta traversing overhead since the heap table
is unordered, and the analytical query requires a full-table
scan to access the heap table.

(2) Delete-Table Merging. This method depicts the
delete table-based merging [59], which periodically merges
the delta data to the column store based on a delete table;
the delta store is an index-organized table (i.e., B-tree) that
maintains the latest transaction data. The delete table is
a bitmap that holds the row IDs (RIDs), where each one
indicates a row’s location in the column store. The delta
merging consists of two phases. In the first phase, it assigns
a RID to each row from the delta store and inserts it into the
delete table. Then, it transforms the row-wise delta data to
the column store with the RIDs that are hidden by the delete
table. In the second phase, it removes the RIDs from the
delete table, and truncates the data in the delta store. Note
that the first phase and the second phase are committed as
a transaction, respectively. This is mainly for ensuring the
data consistency.

Pros and Cons. Delete-table merging supports fast lookup
as the delta data is indexed. However, inserting the data has
additional overhead due to the data insertion to the index
and deleting the table.

(3) Dictionary-Based Merging. This method shows the
dictionary-based merging [117], which organizes the delta
data in a columnar format and merges the delta to the
primary column store based on dictionaries. Particularly,
it organizes the delta column by column, and maintains a
dictionary with a data vector for each column. The delta
merging also consists of two phases. Firstly, new data is
merged to a delta column store with a local dictionary and
a data vector. Secondly, the local dictionaries are merged
into a primary column store with a global dictionary and a
global data vector.

Pros and Cons. This method has high efficiency as both
the delta store and primary store are organized in a colum-
nar format, and data is indexed using dictionaries. However,
as each delta column is indexed by a local dictionary, the
volume of delta data grows drastically when the number of
data updates increases.

4.3.2 Log-based Delta Merging

This type of technique records the delta data in the change
log, and then synchronizes the data between the row store
and column store with log shipping and replaying. There are
two kinds of log-based merging techniques: (1) multi-level
delta merging; and (2) change data capture mechanism;

12

(1) Multi-Level Delta Merging. This method [44], [134]
merges the deltas in the memory level and the deltas in the
disk level. It contains four levels from a top-down view:
B+tree, memory level, delta space, and persistent storage.
Firstly, data manipulation language (DML) operations, such
as insert, delete, and update operations, are inserted into a
B+ tree after committing the write-ahead log. Secondly, the
write operations of a batch are appended to a small delta in
the memory, thus the merging process can be performed in
batches. Thirdly, the small deltas are compacted and merged
into larger delta files in the disk. These small deltas are
merged together in the order in which they were written,
so these delta files are unordered. Nevertheless, the multi-
version, duplicate, and rolled-back records will be removed
in the process of merging. Lastly, the unordered delta files
will be periodically merged into the persistent storage in
a columnar format. Particularly, the persistent storage or-
ganizes the data with the ordered chunks, where each one
covers a part of the range of the data. Since the delta files
are out of order, the merge operation will produce a large
overhead. Therefore, it will locate the data by searching over
the B+ tree, and then merge the data with the order.

Pros and Cons. Multi-level delta merging has high scala-
bility as the delta data is organized in multiple stages with
partitioned files. However, it has a high merging cost due to
the large I/O overhead.

(2) Change Data Capture (CDC). CDC is another merg-
ing mechanism [21], [60], [82], which monitors the data
updates in the change log, and replicates the change log
to the analytical store asynchronously. Generally, it treats
the log as the first citizen, and then migrates the valid log
records to the column store.

Pros and Cons. The CDC mechanism has a high-
performance isolation as the OLTP and OLAP workloads are
physically isolated in different nodes or systems. However,
it incurs high latency due to the log shipping and replaying.

4.4 Query Optimization
We summarize three types of query optimization tech-
niques: (1) hybrid row/column scan [44], [59]; (2) multi-
version indexing [125], [109] and (3) CPU/GPU acceleration
[61], [9]. Next, we dive into each type of technique.

4.4.1 Hybrid Row/Column Scan
In the HTAP databases, a complex query can be routed to
perform against either the row store or the column store.
We call such an execution mode as hybrid row/column
scan [44], [59], [91]. Moreover, a query can also be executed
in a fine-grained way such that part of the operators are
processed in the column store, and the rest of the operators
are processed in the row store, and finally the results are
combined. For instance, the short-range or point queries
can be performed using B+ tree indexes in a row store;
column scans and complex aggregations can be processed
using SIMD scans in a column store; the query coordinator
merges the results from both execution engines to the final
results. Suppose a SQL query finds the license and color of
the vehicles registered in Beijing as follows:

SELECT V.license, V.color
FROM Register R, Vehicle V

WHERE R.VID=V.ID and R.place =”BJ”

Such an SQL query contains a two-way join between the
Register and Vehicle tables with an equality predicate on the
place field. The logical plan is separated into a hybrid plan,
which relies on a B+ tree to search for the qualified records
in the Register table, then joins their VIDs with the IDs of
the Vehicle table in the column store, finally it returns the
results by projecting the columns of license and color in the
Vehicle table. Hence, the query execution can benefit from
both the index scan in the row store and the columnar scan.

Various interfaces for hybrid scan [38], [56], [59], [44]
have been developed. For instance, Oracle [56] can create
an in-memory columnar table by altering the table with
”INMEMORY” keyword, then any given SQL query can
be executed with a rule-based hybrid scan. SQL Server [59]
supports the hybrid scan by building a ”COLUMNSTORE
INDEX” over the target attributes or tables, and then it
accelerates the queries with cost-based columnar scans. Al-
loyDB [38] performs a cost-based hybrid scan in the operator
granularity after enabling its columnar engine. TiDB [44]
allows for creating n columnar replicas by altering a table T
with ”SET TIFLASH REPLICA n”, then the queries can be
executed using distributed columnar scans. It also supports
the hint-based hybrid scan, which can force the access
paths using hints. Recall the above SQL query. If a hint
”read from storage(TIKV[Register], TIFLASH[Vehicle])” is
added to the SQL query, then the Register table will be
probed from the TIKV row store and the Vehicle table will
be scanned from the TIFLASH column store.

The key to hybrid row/column scans is to determine
whether a query or an operator should be executed against
the row or column store. However, it is not always straight-
forward to generate an optimal plan for a more complex
query to which the plan space is large. Existing methods are
mainly grouped into two types: (1) rule-based execution;
and (2) cost-based execution.

(1) Rule-based Execution. This type of method utilizes
heuristic rules to execute the queries. They rely on two rules
of thumb, namely, (i) the columnar scan is more efficient
than the index scan and row scan; and (ii) the index scan is
more efficient than the row scan. For instance, Oracle [91]
performs the hybrid scan by following a ”column first, row
later” principle: if some columns do not exist in the column
store, it scans them in the row store, and finally merges the
results from the columnar scan and row scan.

Pros and Cons. The rule-based methods have a high
efficiency because of the short planning time by the rules of
thumb. However, they may miss the optimal plan as they do
not explore the global plan space. For example, an index row
scan may be more efficient than a columnar scan, depending
on the cost of the specific plans. Therefore, it is preferable to
consider the cost of candidate plans as well.

(2) Cost-based Execution. This type of methods [44],
[59], [101] selects the access path by comparing the cost
of the candidate execution paths. For instance, TiDB [44]
builds a cost model among the columnar scan, row scan, and
index scan, and it selects the access path with the minimum
cost. Unfortunately, the cost model considers only scan
operations. PolarDB-IMCI [132] utilizes a threshold-based
cost model to select either the row scan or columnar scan.

13

It relies on the row-based cost model, and if a query cost is
beyond a pre-defined threshold, the query is routed to the
column store. Metis [122] is a recent work that can generate
HTAP-aware hybrid plans by considering the cost of data
updates and data synchronization. Its core contribution is
a new cost model that considers the delta scan, columnar
scan, index scan, and row scan, which can guide the access
path selection.

Pros and Cons. This method can produce query plans
of high quality. However, existing cost functions are based
on independence and uniform distribution assumptions, so
the estimation may be inaccurate when these assumptions
do not hold. Besides, existing works lack a global and
comprehensive cost model for HTAP workloads.

4.4.2 Multi-Version Indexing
Multi-version indexing aims to accelerate HTAP through
new indexing methods. Two representatives are Parallel
Binary Tree (P-Tree) [125] and Multi-Version Partitioned B-
Tree (MV-PBT) [109].

The main idea of P-Tree is to replicate the data paths
involved in the latest transaction on the balanced binary
tree, and it leverages multi-core processors to operate on
the data concurrently. Furthermore, P-Tree implements the
snapshot isolation level, so queries can also access snap-
shot data visible on the index at the same time. The read
operation obtains the pointer of the root node, and then
follows the index to find the visible versions of data on
the path; the update operation will create a new version
of the root node, then copies all relevant paths and updates
the target node; both read and update operations can be
completed in O(log n) time. P-Tree also supports nested
mode across multiple tables, so queries can access cross-
table data through indexes without joins.

MV-PBT utilizes a multi-version partitioned B-Tree to
index the updated data versions. The motivation is that
there could be long version chains for an MVCC-based
HTAP database, so efficient indexing for the version chains
is required. The main challenge is how to efficiently index
multi-version data of the same data and support fast queries
of the latest visible version data. MV-PBT is based on the
partitioned B-Tree that is divided based on the specified
key, and each partition has the same search key. All updates
of the transaction will be written to the memory buffer;
when the buffer is full, the data will be persisted to the
corresponding partitioned B-Tree.

Pros and Cons. P-Tree has a high efficiency as the data can
be read and updated concurrently. However, the downside
is that it consumes large memory size and CPU resources
as a single update leads to a copied path. Since different
versions of the same data have been indexed into the
partition B-Tree, it supports a fast search of visible versions
of the data. Compared to the P-Tree, MV-PBT has a higher
scalability as the data is indexed using a disk-based B-tree.
However, it has a low throughput due to the row-based
query processing.

4.4.3 CPU/GPU Acceleration
The heterogeneous integrated processor of CPU/GPU is
also an important technology for HTAP query optimiza-
tion [9], [61], [136]. This type of technique utilizes the task-

parallel nature of CPUs and the data-parallel nature of
GPUs for handling OLTP and OLAP, respectively. Existing
CPU/GPU methods for HTAP are based on a dual store to
isolate the workload execution of OLTP and OLAP work-
loads. That is, using CPU and transactional store for OLTP
and using GPU and analytical store for OLAP. Therefore,
the kind of technique is also called heterogeneous HTAP
(H2TAP) [9]. Particularly, the HTAP workload is classified
into OLAP workload and OLTP workload; OLAP is exe-
cuted on the analytical store through the GPU, and OLTP
is processed on the transactional store with CPU cores; the
data updated by the transactional storage can be synchro-
nized to the analytical storage in batches. Ideally, the analyti-
cal store will organize the data in a columnar format, and the
transaction store will use a row-based format. However, ex-
isting methods only adopt purely column-based format [9],
[61] due to the consideration of the engineering complexity.
Therefore, this approach favors high OLAP throughput but
has a low OLTP throughput. It is worthwhile to mention
that the architecture and processing paradigm of H2TAP has
many variants and can be changed for different types of
workloads accordingly. For instance, some CPU cores can
also be deployed in the GPU chips to accelerate the short
queries in parallel [9]. Besides, recent work shows that
transactions can be accelerated using GPU [14], and read-
only queries can be executed in both CPU and GPU with a
proper data placement strategy [136].

Pros and Cons. The H2TAP method favors high analytical
throughput because queries can be accelerated by GPU or
hybrid scan of CPU/GPU. However, it suffers from the low
freshness issue due to the low network bandwidth of PCIe
between CPU and GPU.

4.5 Resource Scheduling

HTAP databases need to support the efficient execution
of OLTP and OLAP workloads simultaneously, but the
performance degradation could be remarkable due to the
data synchronization and resource contention. Besides, data
freshness is another concern if OLAP cannot read the latest
updated data. Existing methods include freshness-driven
scheduling and workload-driven scheduling.

4.5.1 Freshness-Driven Scheduling
This method [108] switches the execution modes based on
a freshness threshold. Each execution mode adopts a par-
ticular strategy for resource allocation and data exchange.
For instance, the scheduler controls the execution of OLTP
and OLAP in isolation for high throughput, and then pe-
riodically synchronizes the data. Once the data freshness
becomes low, it switches to an execution mode where OLTP
and OLAP share the same copy of data such that the queries
can access the fresh data directly.

Such a method works by varying three execution modes:
(S1) Co-located execution with the OLTP instance and OLTP
instance, where the OLTP instance handles transactions and
can access the fresh data with the copy-on-write mechanism;
(S2) Isolated execution with the OLTP instance and OLAP
instance, where OLTP instance handles transactions and
OLAP instance processes the queries, and the delta data
in OLTP instance is periodically synchronized to the OLAP

14

instance; (3) hybrid execution with two OLTP instances and
the OLAP instance, where OLAP queries need to analyze
the base data in the OLAP instance and the delta data in
OLTP instance simultaneously. For resource scheduling, the
system executes S2 mode by default, which favors high-
performance isolation. When the data freshness is less than
the given threshold specified in the service-level agreement
(SLA), it can jump to S1 or S3. There is a trade-off among S1,
S2, and S3: S1 can analyze the fresh data immediately, but
the analytical capacity is limited; S3 can analyze the fresh
data with more CPU and storage resources, but it needs
to access two instances for query processing. S2 handles
the hybrid workloads with better isolation, but the data
freshness is lower due to the latency of data exchange.

Pros and Cons. The freshness-driven scheduling strikes
a good balance between performance and freshness. How-
ever, the system performance may fluctuate due to the
frequent mode switching. Therefore, it might be helpful to
design some mechanisms for lazy switching.

4.5.2 Workload-Driven Scheduling

This kind of methods [103], [104], [119] dynamically sched-
ules resources such as CPU, shared cache, and memory
bandwidth, by monitoring the execution of the mixed work-
load. Since the access patterns of OLTP and OLAP work-
loads are different, the resource scheduling needs to adapt
to their performance characteristics.

For CPU resources, workload-driven scheduling adjusts
the parallelism threads of OLTP and OLAP tasks. The initial
number of threads of OLTP is set to the number of CPU
cores, and the number of threads of OLAP is set to an aver-
age parallelism based on the history statistic. The scheduling
method adaptively adjusts the number of threads based on
the performance of executed workloads. For example, when
CPU resource is saturated by OLAP threads, the task sched-
uler can decrease the parallelism of OLAP while enlarging
the OLTP threads. When the monitoring process (e.g., a
watchdog [103]) detects a blocked transaction thread, it will
join it to a blocking queue and will try to restart the blocked
task. For shared cache and memory bandwidth resources, it
can also be dynamically adjusted by observing the workload
execution [119]. For example, when the OLAP throughput
decreases drastically in a hybrid execution, it indicates that
the OLTP execution affects the OLAP execution. Hence,
more shared cache, e.g., LLC cache, can be assigned to the
OLAP instance. In addition, when the OLAP throughput
drops due to the synchronization process, it is necessary to
allocate more resources to the synchronization process.

Pros and Cons. This method has high throughput as
it regards the throughput metric as the first-class citizen.
However, it has a low freshness as it does not consider the
freshness metric at all.

5 HTAP BENCHMARKS

Table 3 summarizes eight state-of-the-art HTAP bench-
marks, including five end-to-end benchmarks and three
micro-benchmarks.

5.1 CH-Benchmark

CH-benchmark [26], a.k.a., TPC-CH [35], is a widely-used
end-to-end HTAP benchmark that combines two classical
TPC benchmarks, i.e., TPC-C [128] for benchmarking trans-
actional processing systems, and TPC-H [129] for bench-
marking analytical reporting systems.

(1) Data Schema. CH-benchmark unifies the schema
of TPC-C and TPC-H in an application domain of retail
business, simulating the behaviors of wholesale suppliers
that process the customers’ orders and analyze the fresh
sales data simultaneously. Specifically, it combines TPC-
C’s nine tables and TPC-H’s eight tables to a schema of
12 tables by merging the overlapping tables from TPC-H
(i.e., customer, orders, lineitem, part) and by removing its
partsupp table. It has adjusted the scaling model for data
generation based on the number of warehouses.

(2) Workloads Since the schema of TPC-C has not
changed, the CH-benchmark preserves all the five transac-
tions of TPC-C for OLTP. For OLAP workloads, it has made
several modifications on TPC-H’s. First, it has adjusted the
tables’ names and join keys of the original 22 queries. Sec-
ond, it has reduced the arithmetic operations in the queries.
Third, it has removed the refresh function of TPC-H as TPC-
C has included the operations of data updates.

(3) Execution Rule. The execution rule involves two
steps: (i) it first executes n streams of OLTP workloads
and m streams of OLAP workloads in isolation, then (ii)
it performs the mixed workloads with the same number of
streams in parallel. The main purpose is to evaluate how
HTAP systems can handle the interference of two types
of workloads by comparing the performance between the
isolation mode and the hybrid mode.

(4) Performance Metrics. CH-benchmark has a
reference-based metric to measure performance by combin-
ing the metrics of tpmC and QphH. Particularly, tpmC is the
number of transactions processed by the system per minute,
and QphH is the number of queries handled by the system
per hour. Two reference-based metrics are as follows:

M (OLTP) =
tpmC

QphH
@tpmC (1)

M (OLAP) =
tpmC

QphH
@QphH (2)

where both metrics consist of two parts: the former part
measures a ratio between tpmC and QphH, and the lat-
ter part is the referenced primary metric, i.e., tpmC for
M(OLTP) and QphH for M(OLAP). Suppose M(OLTP) is
used, and the execution rule follows the isolation-and-
hybrid execution mode. For the isolated/sequential execu-
tion, M(OLTP) is 2.5@5000 tpmC. Meanwhile, for the hybrid
execution, M(OLTP) becomes 3@5500 tpmC, indicating the
OLTP throughput is increased with hybrid execution.

5.2 HTAPBench

HTAPBench [25] also combines TPC-C and TPC-H. It adopts
the same data schema and the same hybrid workloads in
CH-benchmark. Its main contribution is two-fold. First, it
curates the parameters of OLAP queries with the concept of
a dynamic window. Second, it contains an execution rule for

15

TABLE 3
An Overview of HTAP Benchmarks

Benchmark Type Domain/Task Benchmark/Workload Execution Rule Metrics

CH-Benchmark [26]
End-to-End
Benchmark

Retail Business TPC-C+ TPC-H
Isolated Execution+
Hybrid Execution

Referenced
Throughput

HTAPBench [25]
End-to-End
Benchmark

Retail Business TPC-C+ TPC-H
Fixed OLTP workers+
varied OLAP workers

Referenced
Throughput

OLxPBench [50]
End-to-End
Benchmarks

Retail Business TPC-C+9 queries+5 txns Hybrid Execution Throughput
Banking Small bank +4 queries+6 txns Hybrid Execution Throughput
Telecom TATP+5 queries + 6 txns Hybrid Execution Throughput

HATtrick [79]
End-to-End
Benchmark

Retail Business SSB + 3 txns Hybrid Execution
2D Throughput

Freshness

HyBench [139]
End-to-End
Benchmark

Online Finance
18 txns+13 queries

+12 mixed operations
Hybrid Execution

F-Score
H-Score

ADAPT [11] Micro-benchmark Data Organization 1 insert + 4 select queries Hybrid Execution Throughput
HAP [12] Micro-benchmark Data Organization 6 CRUD queries Hybrid Execution Throughput

mOLxPBench [48] Micro-benchmark Data Synchronization 6 CRUD queries Hybrid Execution Tail Latency

targeting a fixed OLTP throughput by adaptively launching
the OLAP workers.

(1) Workloads. HTAPBench employs the mixed work-
load of TPC-C and TPC-H. However, since TPC-H adopts
the fixed parameters for the queries, the performance results
across runs are often incomparable in the hybrid execution
mode. This is mainly because TPC-C’s workload may up-
date different parts of data during execution and change the
data distribution. To address such a problem, HTAPBench
leverages the dynamic query generator, which utilizes a
density consultant to generate the parameters for the ana-
lytical queries to ensure the same query selectivity during
execution. Particularly, it curates the parameters based on
the DATE field to slide the time windows of queries for
accessing the newly inserted data.

(2) Execution Rules. Instead of scaling the query streams
of OLTP and OLAP simultaneously, HTAPBench regards the
OLTP throughput as the first citizen. That is, it targets a
fixed OLTP throughput and evaluates how well the SUT
systems process the OLAP workloads while keeping the
OLTP throughput and scaling the OLAP workers. Specifi-
cally, according to the TPC-C’s specification that defines the
maximum of 1.286 tpmC per client, it computes the number
of clients and warehouses for a target tpmC, then populates
the databases and launches the OLTP workload execution.
Then, it gradually starts the OLAP workers based on a client
balancer, which monitors the throughput gap between the
actual tpmC and the target tpmC, and periodically decides
whether or not to start an additional OLAP worker. Namely,
if the current gap is larger than a margin and the resource
is not saturated, then a new OLAP worker will be started.
Otherwise, the balancer keeps monitoring.

(3) Performance Metrics. Based on the execution rule,
HTAPBench proposed a OLTP-oriented metric for measur-
ing the HTAP performance as follows:

QpHpW =
QphH

#OLAPworkers
@tpmC (3)

where QpHpW denotes the number of processed Queries
per Hour per Worker. The former part is a ratio between
TPC-H’s metric and the total number of OLAP workers. The
latter part is the target tpmC.

5.3 OLxPBench
OLxPBench [50] is a composite HTAP benchmark suite. It
consists of three domain-specific HTAP benchmarks inher-
ited from three established OLTP benchmarks, respectively.
Namely, Subenchmark is from the TPC-C benchmark [128]
at a retail business scenario, Fibenchmark is from the Small-
Bank [7] benchmark at a bank scenario, and Tabenchmark
is from the TATP [126] benchmark at a telecom scenario.
OLxPBench makes two modifications. First, it contains new
analytical queries with the transactions to compose an
HTAP workload. Second, it includes analytical transactions
that perform real-time queries inside the transactions.

(1) Data Schema. The OLxPBench benchmarks have the
schema of three original OLTP benchmarks. Particularly,
Subenchmark preserves nine tables from TPC-C; Fibenchmark
keeps three tables from SmallBank, i.e., ACCOUNT, SAV-
ING, CHECKING; Tabenchmark includes all the five tables
from TATP, which simulates a Home Location Register
(HLR) database used by a mobile carrier.

(2) Workloads and Execution Rules. Unlike CH-
benchmark where the analytical queries only operate on
the overlapping tables of TPC-C, OLxPBench follows se-
mantic consistency, meaning that both queries and trans-
actions shall cover all the tables. For instance, the history,
warehouse, and district tables will never be touched in
the queries of CH-benchmark, while OLxPBench contains
several queries that analyze the records from these tables.
Moreover, OLxPBench includes analytical transactions that
are originally proposed by Gartner, which envisioned HTAP
transactions that include analytical operations. Specifically,
OLxPBench implements such a transaction by adding a real-
time query to each transaction in all the three benchmarks.
With the new workload, OLxPBench offers three execution
modes: (1) a sequential execution mode of transactions and
queries. (2) a concurrent execution mode of mixed work-
loads. and (3) an execution mode of analytical transactions.

5.4 HATtrick
HATtrick [79] is an end-to-end HTAP benchmark, which
combines an analytical benchmark, SSB [89], with a trans-
actional component inspired by TPC-C. It has two contri-
butions to the performance metrics. First, it proposes the

16

metric of the throughput frontier to capture the OLTP and
OLAP throughput with a 2D visualization graph. Second, it
uses the freshness score to quantify the transaction’s recency
for a query by the analytical client (A-client).

(1) Data Schema. HATtrick modifies the SSB schema
from two aspects. First, it adds a HISTORY table and up-
dates the relations of CUSTOMER, SUPPLIER, and PART
by adding new attributes that will be used by the transac-
tions. Second, it incorporates a set of entries FRESHNESS j ,
where each entry stores an integer transaction number TXN-
NUM for the i-th transactional client (T-client). TXNNUM is
used to calculate the freshness score for the queries.

(2) Workloads and Execution Rules. For analytical
queries, HATtrick contains all 13 queries of SSB with a mod-
ification to return the freshness entries. Each A-client per-
forms a batch of 13 queries recursively with random orders.
For transactions, HATtrick defined three transactions based
on TPC-C, including two read-write transactions, NEW OR-
DER and PAYMENT, and a read-only transaction, COUNT
ORDERS. Each T-client defined the ratio of transactions with
48%, 48%, and 4%, respectively. Each transaction committed
by the T-client j will update the FRESHNESS j with the
transaction ID accordingly. By configuring the number of
T-clients and A-clients, HATtrick executes the workloads
concurrently.

(3) Performance Metrics. HATtrick introduces two met-
rics: throughput frontier and freshness score. Throughput
frontier is a 2D graph where the x-axis represents the
throughput of T-clients, and the y-axis depicts the through-
put of A-clients. By fixing either the T-clients or A-clients
while varying the number of the other types of clients,
the throughput frontier can be effectively computed. The
plotted throughput frontiers can reflect the relationships
between performance characteristics and workload interfer-
ence. For instance, if the frontier is below the diagonal line of
the bounding box, then the hybrid throughput is relatively
low, and workload contention is high. If the frontier is close
to the bounding box, then the hybrid throughput is high,
and the performance isolation is good. With a global clock,
HATtrick defined the freshness score fAq

of an analytical
query Aq as follows:

fAq = max(0, tsAq
− tfns

Aq
) (4)

where tfns

Aq
is the commit time of the first transaction tfns

that is unseen by Aq . tsAq
is the start time of Aq . Intuitively,

the smaller the score is, the fresher the data is. The larger
the score is, the analyzed data is more stale.

5.5 HyBench
As existing benchmarks [25], [26], [50], [79] heavily rely
on traditional OLTP benchmarks (e.g., TPC-C) or OLAP
benchmarks (e.g., TPC-H), they fall short of providing rep-
resentative HTAP data, workload, and metrics.

HyBench [139] is a newly-emerged benchmark for HTAP
databases, which features a new data generator, a multi-set
workload, and a unified metric. First, it contains a schema
by simulating a realistic online finance HTAP scenario, and
it provides a data generator based on a time-dependent
generation phase and an anomaly generation phase. Regard-
ing the workload, it has three sets of workloads for OLTP,

OLAP, and OLXP, evaluating the performance of transaction
processing, analytical processing, and hybrid processing,
respectively. To quantify the overall HTAP performance,
it proposes a unified metric, H-Score, that combines the
performance of OLTP (TPS), OLAP (QPS), and OLXP (XPS)
and data freshness.

(1) Data Schema. Its schema is based on an online finance
application inspired by the real-world HTAP applications in
the field of finance technology (FinTech) [70], [127], [135].
The schema consists of eight tables, including CUSTOMER,
COMPANY, SAVINGACCOUNT, CHECKINGACCOUNT,
TRANSFER, CHECKING, LOANAPP, and LOAN, simulat-
ing the widely-used finance activities such as saving, pay-
ment, and loan application. The data generation produces
the testing data based on a given scale factor (SF), and
the data size grows linearly as the SF increases. Instead of
using uniform data generation [79], HyBench leverages a
time-dependent data generation to generate data in three
time ranges, enabling efficient and realistic data generation.
Additionally, it proposes an anomaly generation phase to
produce blocked accounts and illegal transactions, which
simulate realistic anomalies.

(2) Workloads and Execution Rules. HyBench contains 18
operational transactions, 13 analytical queries, and 12 mixed
operations that include six analytical transactions (AT) and
six interactive queries (IQ), providing a rich set of workloads
for benchmarking HTAP databases. For instance, AT1 makes
a transfer while performing the risk controlling by analyzing
if the target has any risks; IQ1 finds related transfers for
a blocked user on-the-fly. HyBench follows a three-phase
execution rule to execute the hybrid workload in a row,
including an AP phase, a TP phase, and an XP phase, and
then it outputs a unified metric.

(3) Performance Metrics. HyBench proposes two new
metrics tailored to HTAP databases, namely, F-Score and
H-Score. F-Score is used to measure the data freshness by
measuring the timestamp difference between the result set
from the OLTP instance and the OLAP instance. Particularly,
it is a general method that supports the cases of insert,
update, and delete. H-Score is a unified metric that relies on
geometric mean to measure the overall HTAP performance.
Given the concurrency of TP workers and AP workers
(n,m), it is defined as follows:

H-Score = SF ∗
3
√
TPS ∗QPS ∗XPS

fs + 1
(5)

where XPS = ATS+IQS, and ATS and IQS are analytical
transactions per second and interactive queries per second,
respectively; SF is the used scale factor; fs is the F-Score that
is measured in seconds, and it is added with 1 to avoid that
the denominator is zero.

5.6 Micro-Benchmarks
Other than the end-to-end benchmarks, there are three syn-
thetic micro-benchmarks [11], [12], [48] that were developed
to evaluate the adaptive data layout in HTAP databases.
Particularly, ADAPT [11] contains two synthetic tables with
50 and 500 integer attributes, respectively. Each table owns
a primary key a0 and has ten million tuples. The workload
operates on either the narrow table or the wide table, i.e.,

17

the table with 500 attributes. It contains an insert query,
three selection queries, and a self-join query. The selection
queries project a subset of the attributes (a1, . . . ap) with a
filter on the primary key a0. The self-join query projects a
subset of the attributes with a theta-join on two random
attributes, i.e., X.ai < Y.aj . HAP [12] was inspired by
ADAPT. For the data schema, it contains a narrow table of
16 columns and a wide table of 160 columns. Regarding the
workload, it contains six queries, including a point query
with a projection, two aggregation queries with range filters,
an insert query, a delete query, and an update query with an
equality filter on the primary key. mOLxPBench [48] is a
new HTAP microbenchmark, which contains a single ITEM
table with 59 attributes and includes five queries and one
update. A salient feature is that it can control the rate at
which fresh data is generated and the scan range. Therefore,
the greater the rate and range are, the more data needs to be
synchronized, and the tail latency increases sharply.

6 OPEN PROBLEMS AND CHALLENGES

In this section, we present several open problems and dis-
cuss the research challenges for HTAP databases.
Data Organization for Distributed HTAP Databases. As
various HTAP databases are going towards distributed ar-
chitectures, the data organization poses many new chal-
lenges. The first challenge is to decide which columns to
keep in memory, which on disk, and on which nodes. The
second challenge is to decide whether the data is organized
in a row-wise or column-wise or unified format [69], [111].
The third challenge is to decide which compression meth-
ods [15] should be used, and in which granularity (table or
column or segment [31]). Proteus [2], [3] is a recent represen-
tative that employed an offline learning method considering
many factors to organize the data. However, the offline
learning method needs to be further justified due to the
high complexity of model learning and data organization.
It might be helpful to address these challenges separately
to reduce the complexity. In addition, combining the offline
learning with lightweight online learning methods [64], [65],
[66] can also mitigate the training overhead.
Query Optimization in HTAP Databases. There are several
open problems for HTAP query optimization. The first one
is about hybrid scans for analytical queries. As the existing
interface has limited functionality for hybrid scans (e.g.,
data cannot be exchanged between the row and column
data), it calls for more flexible and effective methods to
generate hybrid plans. The second open problem is the
FPGA-enabled HTAP. Recent works [110], [131] have shown
some promising results on such a task, but more HTAP
workloads need to be explored as many operators have yet
to be implemented. Finally, how to incorporate the learned
indexes [55], [67] for HTAP is also an open issue.
Holistic Scheduling for HTAP. Existing freshness-driven
scheduling [108] relies on a rule-based approach to control
the execution modes with different freshness settings. The
workload-driven approaches [117], [119] only adjust the
number of OLTP and OLAP threads but do not consider the
freshness. Consequently, there still lacks a holistic schedul-
ing method that can orchestrate the workloads, resources,
and freshness together. For example, if the current delta

store is too cumbersome, some OLAP queries may be sched-
uled to OLTP instances for high freshness. Therefore, it is
preferable to develop a holistic scheduling method that not
only captures the workload pattern for better performance,
but also satisfies the requirements of data freshness and cost.
HTAP for Multi-Model Data Analytic. As other data mod-
els such as graph models are calling for the support of
HTAP [47], it is also promising to enable HTAP for multi-
model data analytics. Gart [116] is a pioneering work that
supports the HTAP over row store, and then synchronizes
the delta logs to the graph store. Nevertheless, there still re-
main many opportunities, such as supporting HTAP-aware
multi-model queries [140], [40] and supporting other data
models like semi-structured document.
Serving atop HTAP. Building data services on top of
the HTAP databases is an interesting direction to enable
freshness-driven data serving including real-time machine
learning (ML) based data analytics. Such a concept is also
called HSTAP [49], [78], and how to efficiently and effec-
tively train the ML over the incremental transaction data
remains unexplored.
Cloud-Native HTAP Techniques. Cloud-native HTAP tech-
niques [38], [102], [121] are just unfolding and bring many
new challenges for HTAP. First, since the compute and
storage are disaggregated, it is challenging to deliver a high
data freshness if the log in the storage layer has not been
replayed. Thus, how to guarantee the data freshness with
a low replication latency for the compute layer is an open
problem. Second, it is challenging to schedule the OLAP and
OLTP workloads to meet various requirements of multiple
tenants (e.g., throughput or freshness or cost). Hence, it
calls for SLA-aware HTAP scheduling methods. Third, as
serverless computing [84], [96], [114] is becoming prevalent,
it is still an open problem to utilize serverless computing to
handle the HTAP workloads.

7 CONCLUSION

In this paper, we review the recent advancement of HTAP
databases. We classify the state-of-the-art HTAP databases
according to four storage architectures. We compare their
pros and cons, summarize the challenges and opportu-
nities, and discuss the suitable applications. Since “one
HTAP database cannot fit all”, we recommend choosing
different HTAP architectures to meet the requirements of
specific applications. Furthermore, we present their key
techniques regarding hybrid workload processing, data or-
ganization, data synchronization, query optimization, and
resource scheduling, we then summarize the pros and cons
of various techniques. We also compare and summarize
the state-of-the-art HTAP benchmarks, concerning domain
applications, data schema, workload, execution rules, and
metrics. Finally, we discuss the research challenges and open
problems for HTAP techniques.

ACKNOWLEDGMENTS

This paper was supported by the National Key R&D Pro-
gram of China (2023YFB4503600), NSF of China (61925205,
62232009, 62102215), Huawei, BNRist, CCF-Huawei Popu-
lus Grove Challenge Fund (CCF-HuaweiDBC202309). Guo-
liang Li is the corresponding author.

18

REFERENCES

[1] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden.
The design and implementation of modern column-oriented
database systems. Found. Trends Databases, 5(3):197–280, 2013.

[2] M. Abebe, H. Lazu, and K. Daudjee. Proteus: Autonomous
adaptive storage for mixed workloads. In SIGMOD, pages 700–
714. ACM, 2022.

[3] M. Abebe, H. Lazu, and K. Daudjee. Tiresias: Enabling predictive
autonomous storage and indexing. Proceedings of the VLDB
Endowment, 15(11):3126–3136, 2022.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weav-
ing relations for cache performance. In VLDB, pages 169–180.
Morgan Kaufmann, 2001.

[5] I. Alagiannis, S. Idreos, and A. Ailamaki. H2o: a hands-free
adaptive store. In SIGMOD, pages 1103–1114, 2014.

[6] A. Alhomssi and V. Leis. Scalable and robust snapshot isolation
for high-performance storage engines. Proceedings of the VLDB
Endowment, 16(6):1426–1438, 2023.

[7] M. Alomari, M. J. Cahill, A. D. Fekete, and U. Röhm. The cost of
serializability on platforms that use snapshot isolation. In ICDE,
pages 576–585. IEEE Computer Society, 2008.

[8] Apache Arrow. https://arrow.apache.org/, 2022.
[9] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki.

The Case For Heterogeneous HTAP. In CIDR, 2017.
[10] V. Arora, F. Nawab, D. Agrawal, and A. El Abbadi. Janus:

A hybrid scalable multi-representation cloud datastore. TKDE,
30(4):689–702, 2017.

[11] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago
between Row-stores and Column-stores for Hybrid Workloads.
In SIGMOD, pages 583–598, 2016.

[12] M. Athanassoulis, K. S. Bøgh, and S. Idreos. Optimal Column
Layout for Hybrid Workloads. Proceedings of the VLDB Endow-
ment, 12(13):2393–2407, 2019.

[13] R. Barber, C. Garcia-Arellano, R. Grosman, R. Mueller, V. Raman,
R. Sidle, M. Spilchen, A. J. Storm, Y. Tian, P. Tözün, et al. Evolving
databases for new-gen big data applications. In CIDR, 2017.

[14] N. Boeschen and C. Binnig. GaccO - A GPU-accelerated OLTP
DBMS. In SIGMOD, pages 1003–1016. ACM, 2022.

[15] M. Boissier. Robust and budget-constrained encoding configura-
tions for in-memory database systems. Proceedings of the VLDB
Endowment, 15(4):780–793, 2021.

[16] M. Boissier, R. Schlosser, and M. Uflacker. Hybrid data layouts
for tiered HTAP databases with pareto-optimal data placements.
In ICDE, pages 209–220. IEEE, 2018.

[17] A. Boroumand, S. Ghose, G. F. Oliveira, and O. Mutlu. Enabling
high-performance and energy-efficient hybrid transactional/ana-
lytical databases with hardware/software cooperation. In ICDE.
IEEE, 2022.

[18] D. Borthakur et al. Hdfs architecture guide. Hadoop apache project,
53(1-13):2, 2008.

[19] M. Bouzeghoub. A Framework for Analysis of Data Freshness. In
International workshop on Information quality in information systems,
pages 59–67, 2004.

[20] M. Butrovich, W. S. Lim, L. Ma, J. Rollinson, W. Zhang, Y. Xia, and
A. Pavlo. Tastes great! less filling! high performance and accurate
training data collection for self-driving database management
systems. In SIGMOD, pages 617–630. ACM, 2022.

[21] D. Butterstein, D. Martin, K. Stolze, F. Beier, J. Zhong, and
L. Wang. Replication at the speed of change - a fast, scalable
replication solution for near real-time HTAP processing. Proceed-
ings of the VLDB Endowment, 13(12):3245–3257, 2020.

[22] W. Cao, F. Li, G. Huang, et al. Polardb-x: An elastic distributed
relational database for cloud-native applications. In ICDE, pages
2859–2872. IEEE, 2022.

[23] W. Cao, Y. Zhang, X. Yang, et al. Polardb serverless: A cloud
native database for disaggregated data centers. In SIGMOD,
pages 2477–2489. ACM, 2021.

[24] J. Chen, Y. Ding, Y. Liu, et al. Bytehtap: Bytedance’s HTAP system
with high data freshness and strong data consistency. Proceedings
of the VLDB Endowment, 15(12):3411–3424, 2022.

[25] F. Coelho, J. Paulo, R. Vilaça, J. Pereira, and R. Oliveira. HTAP-
Bench: Hybrid Transactional and Analytical Processing Bench-
mark. In Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering, pages 293–304, 2017.

[26] R. Cole, F. Funke, L. Giakoumakis, et al. The Mixed Workload
CH-benCHmark. In Proceedings of the Fourth International Work-
shop on Testing Database Systems, pages 1–6, 2011.

[27] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s
globally-distributed database. In OSDI, pages 251–264. USENIX
Association, 2012.

[28] U. Cubukcu, O. Erdogan, S. Pathak, S. Sannakkayala, and M. Slot.
Citus: Distributed postgresql for data-intensive applications. In
SIGMOD, pages 2490–2502, 2021.

[29] B. Dageville, T. Cruanes, M. Zukowski, et al. The snowflake
elastic data warehouse. In SIGMOD, pages 215–226. ACM, 2016.

[30] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
Server’s Memory-Optimized OLTP Engine. In SIGMOD, pages
1243–1254, 2013.

[31] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck, M. Uflacker, and
H. Plattner. Hyrise re-engineered: An extensible database system
for research in relational in-memory data management. In EDBT,
pages 313–324, 2019.

[32] A. Dziedzic, J. Wang, S. Das, B. Ding, V. R. Narasayya, and
M. Syamala. Columnstore and B+ tree-Are Hybrid Physical
Designs Important? In SIGMOD, pages 177–190, 2018.

[33] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees. The SAP HANA Database–An Architecture Overview.
IEEE Data Eng. Bull., 35(1):28–33, 2012.

[34] D. Feinberg. Setting the Record Straight – HTAP OPDBMS, 2018.
[35] F. Funke, A. Kemper, and T. Neumann. Benchmarking hybrid

oltp&olap database systems. In BTW, volume P-180 of LNI, pages
390–409. GI, 2011.

[36] Geode. Performance is key. Consistency is a must, 2022.
[37] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber,

F. Gropengiesser, C. Mathis, T. Bodner, and W. Lehner. Towards
Scalable Real-Time Analytics: An Architecture for Scale-Out of
OLxP Workloads. Proceedings of the VLDB Endowment, 8(12):1716–
1727, 2015.

[38] Google AlloyDB. AlloyDB for PostgreSQL, 2024.
[39] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,

and S. Madden. Hyrise: a main memory hybrid storage engine.
Proceedings of the VLDB Endowment, 4(2):105–116, 2010.

[40] Q. Guo, C. Zhang, S. Zhang, and J. Lu. Multi-model query
languages: taming the variety of big data. Distributed and Parallel
Databases, 42(1):31–71, 2024.

[41] HBase. Apache HBase Reference Guide, 2016.
[42] D. Hieber and G. Grambow. Hybrid transactional and analytical

processing databases-state of research and production usage.
[43] D. Hieber and G. Grambow. Hybrid transactional and analytical

processing databases: A systematic literature review. In DATA
ANALYTICS, pages 90–98, 2020.

[44] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang, et al. TiDB: A Raft-based HTAP Database.
Proceedings of the VLDB Endowment, 13(12):3072–3084, 2020.

[45] N. Jeba and S. Rathi. Effective data management and real-time
analytics in internet of things. Int. J. Cloud Comput., 10(1/2):112–
128, 2021.

[46] H. Jiang, C. Liu, J. Paparrizos, A. A. Chien, J. Ma, and A. J.
Elmore. Good to the last bit: Data-driven encoding with codecdb.
In SIGMOD, pages 843–856. ACM, 2021.

[47] M. A. Jibril, A. Baumstark, and K.-U. Sattler. Adaptive update
handling for graph htap. Distributed and Parallel Databases, pages
1–27, 2023.

[48] G. Kang, S. Chen, and H. Li. Benchmarking htap databases
for performance isolation and real-time analytics. BenchCouncil
Transactions on Benchmarks, Standards and Evaluations, 3(2):100122,
2023.

[49] G. Kang, L. Wang, S. Chen, and J. Zhan. Nhtapdb: Native htap
databases. arXiv preprint arXiv:2302.09927, 2023.

[50] G. Kang, L. Wang, W. Gao, F. Tang, and J. Zhan. Olxpbench: Real-
time, semantically consistent, and domain-specific are essential in
benchmarking, designing, and implementing HTAP systems. In
ICDE, pages 1822–1834. IEEE, 2022.

[51] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots. In
ICDE, pages 195–206. IEEE, 2011.

[52] J. Kim, K. Kim, H. Cho, et al. Rethink the scan in MVCC
databases. In SIGMOD, pages 938–950. ACM, 2021.

[53] J. Kim, J. Yu, J. Ahn, S. Kang, and H. Jung. Diva: Making MVCC
systems htap-friendly. In SIGMOD, pages 49–64. ACM, 2022.

[54] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: fast memory-
optimized database system for heterogeneous workloads. In
SIGMOD, pages 1675–1687. ACM, 2016.

19

[55] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The
case for learned index structures. In G. Das, C. M. Jermaine, and
P. A. Bernstein, editors, SIGMOD, pages 489–504. ACM, 2018.

[56] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, et al. Oracle Database
In-Memory: A Dual Format In-Memory Database. In ICDE, pages
1253–1258. IEEE, 2015.

[57] L. Lamport. Paxos made simple, fast, and byzantine. In A. Bui
and H. Fouchal, editors, OPODIS, volume 3, pages 7–9. Suger,
Saint-Denis, rue Catulienne, France, 2002.

[58] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper. Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In SIGMOD,
pages 311–326. ACM, 2016.

[59] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang,
M. Nowakiewicz, and V. Papadimos. Real-Time Analytical
Processing with SQL Server. VLDB, 8(12):1740–1751, 2015.

[60] J. Lee, S. Moon, et al. Parallel Replication across Formats in SAP
HANA for Scaling Out Mixed OLTP/OLAP workloads. VLDB,
10(12):1598–1609, 2017.

[61] R. Lee, M. Zhou, C. Li, S. Hu, J. Teng, D. Li, and X. Zhang. The
Art of Balance: A RateupDB Experience of Building a CPU/GPU
Hybrid Database Product. Proceedings of the VLDB Endowment,
14(12):2999–3013, 2021.

[62] G. Li, H. Dong, and C. Zhang. Cloud databases: New techniques,
challenges, and opportunities. Proceedings of the VLDB Endow-
ment, 15(12):3758–3761, 2022.

[63] G. Li and C. Zhang. HTAP databases: What is new and what is
next. In SIGMOD, pages 2483–2488. ACM, 2022.

[64] G. Li and X. Zhou. Machine learning for data management: A
system view. In ICDE, pages 3198–3201. IEEE, 2022.

[65] G. Li, X. Zhou, and L. Cao. AI Meets Database: AI4DB and
DB4AI. In SIGMOD, pages 2859–2866, 2021.

[66] G. Li, X. Zhou, and L. Cao. Machine learning for databases. In
AIMLSystems 2021: The First International Conference on AI-ML-
Systems, Bangalore India, October 21 - 23, 2021, pages 28:1–28:2.
ACM, 2021.

[67] G. Li, X. Zhou, and L. Cao. Machine learning for databases.
VLDB, 14(12):3190–3193, 2021.

[68] Q. Li, A. Nourbakhsh, S. Shah, and X. Liu. Real-time novel event
detection from social media. In ICDE, pages 1129–1139. IEEE
Computer Society, 2017.

[69] T. Li, M. Butrovich, A. Ngom, W. S. Lim, W. McKinney, and
A. Pavlo. Mainlining databases: Supporting fast transactional
workloads on universal columnar data file formats. Proceedings
of the VLDB Endowment, 14(4):534–546, 2020.

[70] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song. Heteroge-
neous graph neural networks for malicious account detection. In
CIKM, pages 2077–2085. ACM, 2018.

[71] Z. Lu, Q. Cao, H. Jiang, Y. Chen, J. Yao, and A. Pan. Fluidkv:
Seamlessly bridging the gap between indexing performance and
memory-footprint on ultra-fast storage.

[72] C. Luo, P. Tözün, Y. Tian, R. Barber, V. Raman, and R. Sidle. Umzi:
Unified multi-zone indexing for large-scale HTAP. In EDBT,
pages 1–12. OpenProceedings.org, 2019.

[73] Z. Lyu, H. H. Zhang, G. Xiong, G. Guo, H. Wang, J. Chen,
A. Praveen, Y. Yang, X. Gao, A. Wang, et al. Greenplum: A hybrid
database for transactional and analytical workloads. In SIGMOD,
pages 2530–2542, 2021.

[74] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon. Query-based workload forecasting for self-driving
database management systems. In SIGMOD, pages 631–645.
ACM, 2018.

[75] L. Ma, W. Zhang, J. Jiao, W. Wang, M. Butrovich, W. S. Lim,
P. Menon, and A. Pavlo. MB2: decomposed behavior modeling
for self-driving database management systems. In SIGMOD,
pages 1248–1261. ACM, 2021.

[76] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. Batchdb:
Efficient isolated execution of hybrid oltp+ olap workloads for
interactive applications. In SIGMOD, pages 37–50, 2017.

[77] MariaDB. Deploy an HTAP Server with MariaDB ColumnStore
5.5 and Community Server 10.6, 2021.

[78] MatrixOne. HSTAP architecture. https://docs.matrixorigin.cn,
2024.

[79] E. Milkai, Y. Chronis, K. P. Gaffney, Z. Guo, J. M. Patel, and X. Yu.
How good is my HTAP system? In SIGMOD, pages 1810–1824.
ACM, 2022.

[80] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan,
S. Chakraborty, H. Bhanawat, and K. Bachhav. Snappydata:
A unified cluster for streaming, transactions and interactice
analytics. In CIDR, volume 17, pages 8–11, 2017.

[81] T. Mühlbauer, W. Rödiger, et al. Scyper: A hybrid oltp&olap
distributed main memory database system for scalable real-time
analytics. In BTW, pages 499–502, 2013.

[82] MySQL Heatwave. Real-time Analytics for MySQL Database
Service, 2024.

[83] M. Nakamura, T. Tabaru, Y. Ujibashi, T. Hashida, M. Kawaba,
and L. Harada. Extending postgresql to handle olxp workloads.
In INTECH 2015, pages 40–44, 2015.

[84] V. R. Narasayya and S. Chaudhuri. Cloud Data Services: Work-
loads, Architectures and Multi-Tenancy. Foundations and Trends
in Databases, 10(1):1–107, 2021.

[85] T. Neumann, T. Mühlbauer, and A. Kemper. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database
Systems. In SIGMOD, pages 677–689, 2015.

[86] Nikita Ivanov. How HTAP Enables Real-Time Banking Services
At Scale, 2021.

[87] NoisePage. https://noise.page/, 2022.
[88] D. P. A. Nugroho and H. A. Ismail. In-memory database and

memsql.
[89] P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak. The star schema

benchmark and augmented fact table indexing. In TPCTC,
volume 5895 of Lecture Notes in Computer Science, pages 237–252.
Springer, 2009.

[90] D. Ongaro and J. K. Ousterhout. In search of an understandable
consensus algorithm. In USENIX ATC, pages 305–319. USENIX
Association, 2014.

[91] Oracle 21c. Automating Management of In-Memory Objects.
[92] F. Özcan, Y. Tian, and P. Tözün. Hybrid Transactional/Analytical

Processing: A Survey. In SIGMOD, pages 1771–1775, 2017.
[93] A. Pavlo, G. Angulo, J. Arulraj, et al. Self-driving database

management systems. In CIDR. www.cidrdb.org, 2017.
[94] A. Pavlo and M. Aslett. What’s really new with newsql? SIGMOD

Rec., 45(2):45–55, 2016.
[95] D. Peng and F. Dabek. Large-scale incremental processing using

distributed transactions and notifications. In OSDI, pages 251–
264. USENIX, 2010.

[96] M. Perron, R. C. Fernandez, D. J. DeWitt, and S. Madden. Star-
ling: A scalable query engine on cloud functions. In SIGMOD,
pages 131–141. ACM, 2020.

[97] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid
Transaction/Analytical Processing Will Foster Opportunities For
Dramatic Business Innovation. Gartner, pages 4–20, 2014.

[98] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Real-time In-
sights and Decision Making using Hybrid Streaming, In-Memory
Computing Analytics and Transaction Processing. 2016.

[99] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Magic Quad-
rant for Cloud Database Management Systems. Gartner (2021,
December 13), pages 1–37, 2021.

[100] Phoenix. OLTP and operational analytics for Apache Hadoop.
[101] PolarDB. PolarDB HTAP Real-Time Data Analysis Technology

Decryption, 2021.
[102] A. Prout, S. Wang, J. Victor, et al. Cloud-Native Transactions and

Analytics in SingleStore. In SIGMOD, pages 2340–2352, 2022.
[103] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki. Task

scheduling for highly concurrent analytical and transactional
main-memory workloads. In ADMS, pages 36–45, 2013.

[104] I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Böhm, A. Aila-
maki, and K.-U. Sattler. Scaling Up Mixed Workloads: A Battle
of Data Freshness, Flexibility, and Scheduling. In TPCTC, pages
97–112. Springer, 2014.

[105] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou.
Real-time constrained cycle detection in large dynamic graphs.
Proceedings of the VLDB Endowment, 11(12):1876–1888, 2018.

[106] J. T. S. Quah and M. Sriganesh. Real-time credit card fraud
detection using computational intelligence. Expert Syst. Appl.,
35(4):1721–1732, 2008.

[107] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, et al.
DB2 with BLU Acceleration: So Much More Than Just A Column
Store. VLDB, 6(11):1080–1091, 2013.

[108] A. Raza, P. Chrysogelos, A. C. Anadiotis, and A. Ailamaki. Adap-
tive HTAP Through Elastic Resource Scheduling. In SIGMOD,
pages 2043–2054, 2020.

20

[109] C. Riegger, T. Vinçon, R. Gottstein, and I. Petrov. MV-PBT: Multi-
Version Indexing for Large Datasets and HTAP Workloads. In
EDBT, pages 217–228, 2020.

[110] S. Roozkhosh, D. Hoornaert, J. H. Mun, et al. Relational memory:
Native in-memory accesses on rows and columns. In EDBT,
pages 66–79. OpenProceedings.org, 2023.

[111] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim.
L-store: A real-time oltp and olap system. arXiv preprint
arXiv:1601.04084, 2016.

[112] B. Samwel, J. Cieslewicz, B. Handy, J. Govig, et al. F1 query:
Declarative querying at scale. Proceedings of the VLDB Endowment,
11(12):1835–1848, 2018.

[113] H. Saxena, L. Golab, S. Idreos, and I. F. Ilyas. Real-Time LSM-
Trees for HTAP Workloads. arXiv preprint arXiv:2101.06801, 2021.

[114] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, et al. What
serverless computing is and should become: the next phase of
cloud computing. Commun. ACM, 64(5):76–84, 2021.

[115] S. Shen, R. Chen, H. Chen, and B. Zang. Retrofitting High
Availability Mechanism to Tame Hybrid Transaction/Analytical
Processing. In OSDI, pages 219–238, 2021.

[116] S. Shen, Z. Yao, L. Shi, L. Wang, L. Lai, Q. Tao, L. Su, R. Chen,
W. Yu, H. Chen, et al. Bridging the gap between relational
{OLTP} and graph-based {OLAP}. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 181–196, 2023.

[117] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient Transaction Processing in SAP HANA Database: The
End of A Column Store Myth. In SIGMOD, pages 731–742, 2012.

[118] U. Sirin and A. Ailamaki. Micro-architectural analysis of OLAP:
limitations and opportunities. Proceedings of the VLDB Endow-
ment, 13(6):840–853, 2020.

[119] U. Sirin, S. Dwarkadas, and A. Ailamaki. Performance Charac-
terization of HTAP Workloads. In ICDE, pages 1829–1834, 2021.

[120] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki. Micro-
architectural analysis of in-memory oltp. In SIGMOD, pages 387–
402, 2016.

[121] Snowflake Unistore. Getting Started with Transactional and
Analytical data in Snowflake, 2024.

[122] H. Song, W. Zhou, F. Li, X. Peng, and H. Cui. Rethink query
optimization in htap databases. Proceedings of the ACM on Man-
agement of Data, 1(4):1–27, 2023.

[123] Splice Machine. Defining HTAP, 2017.
[124] StoneDB. A Real-time HTAP Database, 2022.
[125] Y. Sun, G. E. Blelloch, W. S. Lim, and A. Pavlo. On Supporting

Efficient Snapshot Isolation for Hybrid Workloads with Multi-
Versioned Indexes. VLDB, 13(2), 2019.

[126] TATP. TATP Benchmark Description (Version 1.0), 2009.
[127] Tecent. Webank. www.webank.com, 2023.
[128] Transaction Processing Performance Council. TPC-C, 2021.
[129] Transaction Processing Performance Council. TPC-H, 2021.
[130] A. Verbitski, A. Gupta, D. Saha, et al. Amazon aurora: De-

sign considerations for high throughput cloud-native relational
databases. In SIGMOD, pages 1041–1052. ACM, 2017.

[131] T. Vinçon, C. Knödler, L. Solis-Vasquez, et al. Near-data pro-
cessing in database systems on native computational storage
under HTAP workloads. Proceedings of the VLDB Endowment,
15(10):1991–2004, 2022.

[132] J. Wang, T. Li, H. Song, X. Yang, W. Zhou, F. Li, B. Yan, Q. Wu,
Y. Liang, C. Ying, et al. Polardb-imci: A cloud-native htap
database system at alibaba. Proceedings of the ACM on Management
of Data, 1(2):1–25, 2023.

[133] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical eval-
uation of in-memory multi-version concurrency control. VLDB,
10(7):781–792, 2017.

[134] J. Yang, I. Rae, J. Xu, et al. F1 lightning: Htap as a service.
Proceedings of the VLDB Endowment, 13(12):3313–3325, 2020.

[135] Z. Yang, C. Yang, F. Han, et al. Oceanbase: A 707 million tpmc
distributed relational database system. Proceedings of the VLDB
Endowment, 15(12):3385–3397, 2022.

[136] B. W. Yogatama, W. Gong, and X. Yu. Orchestrating data place-
ment and query execution in heterogeneous CPU-GPU DBMS.
Proceedings of the VLDB Endowment, 15(11):2491–2503, 2022.

[137] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[138] C. Zhang, G. Li, F. Hua, and J. Zhang. Survey of Key Techniques
of HTAP Databases. Journal of Software, 34(2):761–785, 2022.

[139] C. Zhang, G. Li, and T. Lv. HyBench: A New Benchmark for
HTAP Databases. Proceedings of the VLDB Endowment, 17, 2024.

[140] C. Zhang and J. Lu. Holistic evaluation in multi-model databases
benchmarking. Distributed Parallel Databases, 39(1):1–33, 2021.

Chao Zhang is a postdoctoral researcher at
Tsinghua University. He was awarded the Ph.D.
degree in Computer Science at the University
of Helsinki, Finland. He has given a tutorial on
HTAP databases in SIGMOD 2022 and gave
a tutorial on cloud databases in VLDB 2022.
He serves as a PC member of SIGMOD 2024-
2025, VLDB 2023 Tutorial, and ICDE 2023.
His research interests focus on heterogeneous
database management systems.

Guoliang Li is an IEEE fellow, and a full pro-
fessor at the Department of Computer Science,
Tsinghua University. His research interests in-
clude database systems, large-scale data clean-
ing, and integration. He received the VLDB 2017
Early Research Contribution Award, TCDE 2014
Early Career Award, SIGMOD 2023 Best Pa-
pers, VLDB 2020 Best Papers, and ICDE 2018
Best Paper. He served as a general chair of
SIGMOD 2021, a demo chair of VLDB 2021, and
an industry chair of ICDE 2022.

Jintao Zhang is a master student at Tsinghua
University. He received his bachelor’s degree
in Computer Science at Xidian University. His
research interests focus on the intersection be-
tween database and machine learning.

Xinning Zhang is a master student at Tsinghua
University. He received his bachelor’s degree in
Computer Science at Zhejiang University. His
research interests focus on HTAP databases.

Jianhua Feng is a full professor at the Depart-
ment of Computer Science, Tsinghua University.
He received his bachelor’s degree in Computer
Science at Tsinghua University. His research in-
terests focus on cutting-edge database manage-
ment systems.

